Nonthermal Plasma-Catalytic Dry Reforming of Methane in Parallel-Plate Dielectric Barrier Discharge Reactor Using Mg-Modified Ni Catalysts

IF 3.6 4区 工程技术 Q3 ENERGY & FUELS
Thitiporn Suttikul, Patcharin Naemchanthara, Annop Klamchuen, Sanchai Kuboon, Thongchai Photsathain
{"title":"Nonthermal Plasma-Catalytic Dry Reforming of Methane in Parallel-Plate Dielectric Barrier Discharge Reactor Using Mg-Modified Ni Catalysts","authors":"Thitiporn Suttikul,&nbsp;Patcharin Naemchanthara,&nbsp;Annop Klamchuen,&nbsp;Sanchai Kuboon,&nbsp;Thongchai Photsathain","doi":"10.1002/ente.202402027","DOIUrl":null,"url":null,"abstract":"<p>\nThe conversion of greenhouse gases, particularly CO<sub>2</sub> and CH<sub>4</sub>, into syngas via dry reforming of methane (DRM) has effectively mitigated global warming and climate change issues. The research objectives are to enhance the DRM efficiency and reduce coke formation using Ni catalysts supported on Mg-modified Al<sub>2</sub>O<sub>3</sub> in parallel plate dielectric barrier discharge. Raising the Ni calcination temperature from (Ni/Mg–Al<sub>2</sub>O<sub>3</sub>-500) to 700 °C (Ni/Mg–Al<sub>2</sub>O<sub>3</sub>-700) enhances NiO reduction temperatures, thus diminishing their reducibility. This indicates that Ni/Mg–Al<sub>2</sub>O<sub>3</sub>-700 exhibits stronger NiO–Al<sub>2</sub>O<sub>3</sub> interaction, resulting in increased metal dispersion and decreased crystallite and particle sizes. As the Ni calcination temperature increases from 700 to 800 °C (Ni/Mg–Al<sub>2</sub>O<sub>3</sub>-800) the intensity of the Ni<sub>0.8</sub>Mg<sub>0.11</sub>Al<sub>2</sub>O<sub>4</sub> spinel structure is enhanced. The increased Ni calcination temperature enhances the metal-support sintering processes and promotes the metal nanoparticle cluster formation, leading to increased particle and crystallite sizes, alongside decreased dispersion of Ni and Mg particles on the catalyst surface. The Ni/Mg–Al<sub>2</sub>O<sub>3</sub>-700 exhibits lowest NiO reducibility, strongest NiO–Al<sub>2</sub>O<sub>3</sub> interaction, highest metal dispersion, highest specific surface area, smallest particle, and crystallite sizes. Consequently, it attains the highest CH<sub>4</sub> and CO<sub>2</sub> conversions, H<sub>2</sub> and CO selectivities, and energy efficiency, as well as the lowest coking rate, carbon deposition, carbon loss, and specific energy consumption.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"13 6","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202402027","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The conversion of greenhouse gases, particularly CO2 and CH4, into syngas via dry reforming of methane (DRM) has effectively mitigated global warming and climate change issues. The research objectives are to enhance the DRM efficiency and reduce coke formation using Ni catalysts supported on Mg-modified Al2O3 in parallel plate dielectric barrier discharge. Raising the Ni calcination temperature from (Ni/Mg–Al2O3-500) to 700 °C (Ni/Mg–Al2O3-700) enhances NiO reduction temperatures, thus diminishing their reducibility. This indicates that Ni/Mg–Al2O3-700 exhibits stronger NiO–Al2O3 interaction, resulting in increased metal dispersion and decreased crystallite and particle sizes. As the Ni calcination temperature increases from 700 to 800 °C (Ni/Mg–Al2O3-800) the intensity of the Ni0.8Mg0.11Al2O4 spinel structure is enhanced. The increased Ni calcination temperature enhances the metal-support sintering processes and promotes the metal nanoparticle cluster formation, leading to increased particle and crystallite sizes, alongside decreased dispersion of Ni and Mg particles on the catalyst surface. The Ni/Mg–Al2O3-700 exhibits lowest NiO reducibility, strongest NiO–Al2O3 interaction, highest metal dispersion, highest specific surface area, smallest particle, and crystallite sizes. Consequently, it attains the highest CH4 and CO2 conversions, H2 and CO selectivities, and energy efficiency, as well as the lowest coking rate, carbon deposition, carbon loss, and specific energy consumption.

用镁改性镍催化剂在平行板介质阻挡放电反应器中非热等离子体-催化甲烷干重整
通过甲烷干重整(DRM)将温室气体,特别是CO2和CH4转化为合成气,有效地缓解了全球变暖和气候变化问题。研究目的是在平行板介质阻挡放电中,利用镁修饰Al2O3负载Ni催化剂提高DRM效率,减少结焦。将Ni的焙烧温度从(Ni/ Mg-Al2O3-500)提高到700℃(Ni/ Mg-Al2O3-700),可以提高NiO的还原温度,从而降低其还原性。这表明Ni/ Mg-Al2O3-700表现出更强的NiO-Al2O3相互作用,导致金属分散增加,晶粒尺寸和颗粒尺寸减小。随着Ni煅烧温度从700℃升高到800℃(Ni/ Mg-Al2O3-800), Ni0.8Mg0.11Al2O4尖晶石组织强度增强。升高的Ni焙烧温度增强了金属支撑烧结过程,促进了金属纳米颗粒簇的形成,导致颗粒和晶体尺寸增大,同时Ni和Mg颗粒在催化剂表面的分散减少。Ni/ Mg-Al2O3-700表现出最低的NiO还原性、最强的NiO - al2o3相互作用、最高的金属分散性、最高的比表面积、最小的颗粒和晶粒尺寸。因此,它具有最高的CH4和CO2转化率、H2和CO选择性和能源效率,以及最低的焦化速率、碳沉积、碳损失和比能耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy technology
Energy technology ENERGY & FUELS-
CiteScore
7.00
自引率
5.30%
发文量
0
审稿时长
1.3 months
期刊介绍: Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy. This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g., new concepts of energy generation and conversion; design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers; improvement of existing processes; combination of single components to systems for energy generation; design of systems for energy storage; production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels; concepts and design of devices for energy distribution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信