{"title":"Up-to-Date Review on Flat-Plate Solar Hybrid Photovoltaic Thermal Systems: Absorber Designs and Fabrication Materials","authors":"Yassine El Alami, Elhadi Baghaz, Rehena Nasrin, Moustafa Al-Damook, Rachid Bendaoud, Tarik Bouragba, Mustapha Melhaoui, Mohammadi Benhmida","doi":"10.1155/er/5547555","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Photovoltaic (PV) technology is generally perceived as well-developed but suffers a drop in performance at high temperatures. Faced with this problem, researchers are turning to PV thermal (PVT) systems, which integrate electricity production and thermal energy. Flat-plate PVT systems are the most widely adopted among the various configurations. This article is distinguished by an in-depth analysis of flat-plate PVT systems, drawing on a detailed analysis of recent research. It summarizes the numerous studies on the different layers of PVT systems, providing an overview of advances in this field. The materials used for absorbers and tubes are explored, providing information on their properties and applications and on the research being carried out to optimize their efficiency. The analysis also focuses on heat exchanger, tube, and channel configurations, highlighting innovations to improve their performance. Methods for integrating absorbers and tubes with PV panels, the most efficient types of PV cells, and working fluids for optimizing heat transfer and thermal performance are also discussed. Finally, an overview of software tools for simulating PVT systems and a summary of research on each software tool are provided to help researchers select the most appropriate tools for their modeling. Recommendations for further improvements to the viability of these systems are also provided.</p>\n </div>","PeriodicalId":14051,"journal":{"name":"International Journal of Energy Research","volume":"2025 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/er/5547555","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/er/5547555","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Photovoltaic (PV) technology is generally perceived as well-developed but suffers a drop in performance at high temperatures. Faced with this problem, researchers are turning to PV thermal (PVT) systems, which integrate electricity production and thermal energy. Flat-plate PVT systems are the most widely adopted among the various configurations. This article is distinguished by an in-depth analysis of flat-plate PVT systems, drawing on a detailed analysis of recent research. It summarizes the numerous studies on the different layers of PVT systems, providing an overview of advances in this field. The materials used for absorbers and tubes are explored, providing information on their properties and applications and on the research being carried out to optimize their efficiency. The analysis also focuses on heat exchanger, tube, and channel configurations, highlighting innovations to improve their performance. Methods for integrating absorbers and tubes with PV panels, the most efficient types of PV cells, and working fluids for optimizing heat transfer and thermal performance are also discussed. Finally, an overview of software tools for simulating PVT systems and a summary of research on each software tool are provided to help researchers select the most appropriate tools for their modeling. Recommendations for further improvements to the viability of these systems are also provided.
期刊介绍:
The International Journal of Energy Research (IJER) is dedicated to providing a multidisciplinary, unique platform for researchers, scientists, engineers, technology developers, planners, and policy makers to present their research results and findings in a compelling manner on novel energy systems and applications. IJER covers the entire spectrum of energy from production to conversion, conservation, management, systems, technologies, etc. We encourage papers submissions aiming at better efficiency, cost improvements, more effective resource use, improved design and analysis, reduced environmental impact, and hence leading to better sustainability.
IJER is concerned with the development and exploitation of both advanced traditional and new energy sources, systems, technologies and applications. Interdisciplinary subjects in the area of novel energy systems and applications are also encouraged. High-quality research papers are solicited in, but are not limited to, the following areas with innovative and novel contents:
-Biofuels and alternatives
-Carbon capturing and storage technologies
-Clean coal technologies
-Energy conversion, conservation and management
-Energy storage
-Energy systems
-Hybrid/combined/integrated energy systems for multi-generation
-Hydrogen energy and fuel cells
-Hydrogen production technologies
-Micro- and nano-energy systems and technologies
-Nuclear energy
-Renewable energies (e.g. geothermal, solar, wind, hydro, tidal, wave, biomass)
-Smart energy system