Learning the Expressibility of Quantum Circuit Ansatz Using Transformer

IF 4.3 Q1 OPTICS
Fei Zhang, Jie Li, Zhimin He, Haozhen Situ
{"title":"Learning the Expressibility of Quantum Circuit Ansatz Using Transformer","authors":"Fei Zhang,&nbsp;Jie Li,&nbsp;Zhimin He,&nbsp;Haozhen Situ","doi":"10.1002/qute.202400366","DOIUrl":null,"url":null,"abstract":"<p>With the exponentially faster computation for certain problems, quantum computing has garnered significant attention in recent years. Variational quantum algorithms are crucial methods to implement quantum computing, and an appropriate task-specific quantum circuit ansatz can effectively enhance the quantum advantage of VQAs. However, the vast search space makes it challenging to find the optimal task-specific ansatz. Expressibility, quantifying the diversity of quantum circuit ansatz states to explore the Hilbert space effectively, can be used to evaluate whether one ansatz is superior to another. In this work, using a transformer model to predict the expressibility of quantum circuit ansatze is proposed. A dataset containing random PQCs generated by the gatewise pipeline, with varying numbers of qubits and gates is constructed. The expressibility of the circuits is calculated using three measures: KL divergence, relative KL divergence, and maximum mean discrepancy. A transformer model is trained on the dataset to capture the intricate relationships between circuit characteristics and expressibility. Four evaluation metrics are employed to assess the performance of the transformer. Numerical results demonstrate that the trained model achieves high performance and robustness across various expressibility measures. This research can enhance the understanding of the expressibility of quantum circuit ansatze and advance quantum architecture search algorithms.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 6","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/qute.202400366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

With the exponentially faster computation for certain problems, quantum computing has garnered significant attention in recent years. Variational quantum algorithms are crucial methods to implement quantum computing, and an appropriate task-specific quantum circuit ansatz can effectively enhance the quantum advantage of VQAs. However, the vast search space makes it challenging to find the optimal task-specific ansatz. Expressibility, quantifying the diversity of quantum circuit ansatz states to explore the Hilbert space effectively, can be used to evaluate whether one ansatz is superior to another. In this work, using a transformer model to predict the expressibility of quantum circuit ansatze is proposed. A dataset containing random PQCs generated by the gatewise pipeline, with varying numbers of qubits and gates is constructed. The expressibility of the circuits is calculated using three measures: KL divergence, relative KL divergence, and maximum mean discrepancy. A transformer model is trained on the dataset to capture the intricate relationships between circuit characteristics and expressibility. Four evaluation metrics are employed to assess the performance of the transformer. Numerical results demonstrate that the trained model achieves high performance and robustness across various expressibility measures. This research can enhance the understanding of the expressibility of quantum circuit ansatze and advance quantum architecture search algorithms.

Abstract Image

Abstract Image

利用变压器学习量子电路的可表达性
近年来,量子计算在某些问题上的计算速度呈指数级增长,引起了人们的广泛关注。变分量子算法是实现量子计算的关键方法,适当的特定任务量子电路分析可以有效增强vqa的量子优势。然而,巨大的搜索空间使得找到最佳的特定于任务的分析具有挑战性。可表达性,量化量子电路ansatz状态的多样性来有效地探索希尔伯特空间,可以用来评估一个ansatz是否优于另一个。本文提出用变压器模型来预测量子电路分析的可表达性。构建了一个包含随机pqc的数据集,该数据集由网关管道生成,具有不同数量的量子比特和门。电路的可表达性通过三个度量来计算:KL散度、相对KL散度和最大平均差异。在数据集上训练变压器模型,以捕获电路特性和可表达性之间的复杂关系。采用了四种评价指标来评价变压器的性能。数值结果表明,训练后的模型在各种可表达性度量中都具有较高的性能和鲁棒性。本研究可以增强对量子电路分析可表达性的理解,并促进量子结构搜索算法的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信