Magnetic-Field Induced Charge Accumulation in Scalable Magnetoelectric PVDF-TrFE/Ni Composite Devices

IF 2.8
Federica Luciano, Erika Giorgione, Emma Van Meirvenne, Andrei Galan, Ilaria Marzorati, Arne De Coster, Dominika Wysocka, Bart Sorée, Stefan De Gendt, Florin Ciubotaru, Christoph Adelmann
{"title":"Magnetic-Field Induced Charge Accumulation in Scalable Magnetoelectric PVDF-TrFE/Ni Composite Devices","authors":"Federica Luciano,&nbsp;Erika Giorgione,&nbsp;Emma Van Meirvenne,&nbsp;Andrei Galan,&nbsp;Ilaria Marzorati,&nbsp;Arne De Coster,&nbsp;Dominika Wysocka,&nbsp;Bart Sorée,&nbsp;Stefan De Gendt,&nbsp;Florin Ciubotaru,&nbsp;Christoph Adelmann","doi":"10.1002/apxr.202400158","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the direct magnetoelectric effect in thin film composites comprising a 550 nm thick poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) layer spin-coated onto a 500 µm thick Ni foil substrate. Direct measurements of charge accumulation on dot capacitors with Au top electrodes, induced by the rotation of Ni magnetization from in-plane to out-of-plane orientation by an applied magnetic field, reveal pronounced magnetoelectric coupling. Polarization differences between in-plane and out-of-plane magnetization states of up to (13.8 ± 0.8) × 10<sup>−4</sup> µC cm<sup>−2</sup> are derived from charge measurements. This corresponds to a maximum open circuit voltage difference of up to 75 ± 6 mV and a magnetoelectric coupling coefficient with respect to magnetization changes of 310 ± 27 mVA<sup>−1</sup>. Finite element simulations using COMSOL Multiphysics corroborate experimental findings, indicating near-independence of generated polarizations and open circuit voltages when lateral capacitor dimensions are reduced into the nanometer range. Simulations of nanoscale pillar devices on rigid substrates, employing materials with optimized piezoelectric and magnetostrictive parameters, predict the potential for generating large open circuit voltage differences exceeding 2 V, highlighting the prospects of such devices for spintronic applications.</p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"4 6","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202400158","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Physics Research","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/apxr.202400158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the direct magnetoelectric effect in thin film composites comprising a 550 nm thick poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) layer spin-coated onto a 500 µm thick Ni foil substrate. Direct measurements of charge accumulation on dot capacitors with Au top electrodes, induced by the rotation of Ni magnetization from in-plane to out-of-plane orientation by an applied magnetic field, reveal pronounced magnetoelectric coupling. Polarization differences between in-plane and out-of-plane magnetization states of up to (13.8 ± 0.8) × 10−4 µC cm−2 are derived from charge measurements. This corresponds to a maximum open circuit voltage difference of up to 75 ± 6 mV and a magnetoelectric coupling coefficient with respect to magnetization changes of 310 ± 27 mVA−1. Finite element simulations using COMSOL Multiphysics corroborate experimental findings, indicating near-independence of generated polarizations and open circuit voltages when lateral capacitor dimensions are reduced into the nanometer range. Simulations of nanoscale pillar devices on rigid substrates, employing materials with optimized piezoelectric and magnetostrictive parameters, predict the potential for generating large open circuit voltage differences exceeding 2 V, highlighting the prospects of such devices for spintronic applications.

Abstract Image

Abstract Image

Abstract Image

可伸缩磁电PVDF-TrFE/Ni复合器件中的磁场感应电荷积累
本研究研究了由550 nm厚的聚偏氟乙烯-三氟乙烯(PVDF-TrFE)层自旋涂覆在500 μ m厚的镍箔衬底上的薄膜复合材料的直接磁电效应。在外加磁场作用下,镍的磁化方向由面内方向向面外方向旋转,直接测量了带Au顶电极的点状电容器上的电荷积累,发现了明显的磁电耦合。在高达(13.8±0.8)× 10−4µC cm−2的面内和面外磁化状态之间的极化差异由电荷测量得出。这相当于最大开路电压差可达75±6 mV,磁化变化的磁电耦合系数为310±27 mVA−1。使用COMSOL Multiphysics进行的有限元模拟证实了实验结果,表明当横向电容器尺寸减小到纳米范围时,产生的极化和开路电压几乎无关。采用优化压电和磁致伸缩参数的材料,在刚性衬底上模拟纳米柱器件,预测了产生超过2 V的大开路电压差的潜力,突出了此类器件在自旋电子应用中的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信