{"title":"Deep Learning-Based Estimation of Emission Time and Arrival Time in Diffusive Multi-Receiver Molecular Communication","authors":"Zhen Cheng;Heng Liu;Ziyan Xu;Jiaxin Li;Kaikai Chi","doi":"10.1109/TMBMC.2025.3546503","DOIUrl":null,"url":null,"abstract":"Diffusive molecular communication (DMC) utilizes the emission, diffusion and reception of molecules to transmit information. It has promising prospects in the field of drug delivery. The estimation of emission time and arrival time of molecules in DMC system plays important roles in the resource consumption at the receivers. Existing traditional strategies for the derivation of emission time and arrival time mainly focus on known channel state information (CSI). In this paper, we propose a deep learning method for estimating emission time and arrival time of the molecules in DMC system with unknown CSI by using Transformer-based model, respectively. The simulation results show that the emission time and arrival time of molecules can be accurately estimated by the Transformer-based model which exhibits better estimation and generalization abilities than deep neural network (DNN) model.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"11 2","pages":"257-268"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10906526/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Diffusive molecular communication (DMC) utilizes the emission, diffusion and reception of molecules to transmit information. It has promising prospects in the field of drug delivery. The estimation of emission time and arrival time of molecules in DMC system plays important roles in the resource consumption at the receivers. Existing traditional strategies for the derivation of emission time and arrival time mainly focus on known channel state information (CSI). In this paper, we propose a deep learning method for estimating emission time and arrival time of the molecules in DMC system with unknown CSI by using Transformer-based model, respectively. The simulation results show that the emission time and arrival time of molecules can be accurately estimated by the Transformer-based model which exhibits better estimation and generalization abilities than deep neural network (DNN) model.
期刊介绍:
As a result of recent advances in MEMS/NEMS and systems biology, as well as the emergence of synthetic bacteria and lab/process-on-a-chip techniques, it is now possible to design chemical “circuits”, custom organisms, micro/nanoscale swarms of devices, and a host of other new systems. This success opens up a new frontier for interdisciplinary communications techniques using chemistry, biology, and other principles that have not been considered in the communications literature. The IEEE Transactions on Molecular, Biological, and Multi-Scale Communications (T-MBMSC) is devoted to the principles, design, and analysis of communication systems that use physics beyond classical electromagnetism. This includes molecular, quantum, and other physical, chemical and biological techniques; as well as new communication techniques at small scales or across multiple scales (e.g., nano to micro to macro; note that strictly nanoscale systems, 1-100 nm, are outside the scope of this journal). Original research articles on one or more of the following topics are within scope: mathematical modeling, information/communication and network theoretic analysis, standardization and industrial applications, and analytical or experimental studies on communication processes or networks in biology. Contributions on related topics may also be considered for publication. Contributions from researchers outside the IEEE’s typical audience are encouraged.