VANet: A Solution for Ventricular Arrhythmias Detection of IEGM on Embedded Devices

IF 2 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Chaoyao Shen;Cheng Chen;Meng Zhang
{"title":"VANet: A Solution for Ventricular Arrhythmias Detection of IEGM on Embedded Devices","authors":"Chaoyao Shen;Cheng Chen;Meng Zhang","doi":"10.1109/LES.2024.3483895","DOIUrl":null,"url":null,"abstract":"Real time detection of ventricular arrhythmias (VAs) in patients and timely provision of defibrillation treatment are crucial in the recording of intracardiac electrograms (IEGMs). Recently, deep convolutional networks have been used to detect VAs in IEGM recordings. However, due to their complex computations and model structures make them difficult to deploy on resource-constrained, low-power embedded devices. This letter introduces VANet, a fully convolutional lightweight neural network architecture for detecting VAs in IEGM recordings. Our hardware INT8 quantization implementation method effectively enables its deployment on embedded devices. Results show that it achieves the best performance in terms of accuracy, storage, and latency compared to state-of-the-art network architectures, X-Cube-AI and Tensorflow Lite Micro libraries.","PeriodicalId":56143,"journal":{"name":"IEEE Embedded Systems Letters","volume":"17 3","pages":"176-179"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Embedded Systems Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10737128/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Real time detection of ventricular arrhythmias (VAs) in patients and timely provision of defibrillation treatment are crucial in the recording of intracardiac electrograms (IEGMs). Recently, deep convolutional networks have been used to detect VAs in IEGM recordings. However, due to their complex computations and model structures make them difficult to deploy on resource-constrained, low-power embedded devices. This letter introduces VANet, a fully convolutional lightweight neural network architecture for detecting VAs in IEGM recordings. Our hardware INT8 quantization implementation method effectively enables its deployment on embedded devices. Results show that it achieves the best performance in terms of accuracy, storage, and latency compared to state-of-the-art network architectures, X-Cube-AI and Tensorflow Lite Micro libraries.
基于嵌入式设备的IEGM室性心律失常检测解决方案
实时检测患者室性心律失常(VAs)并及时提供除颤治疗是记录心内电图(IEGMs)的关键。近年来,深度卷积网络已被用于检测脑电图记录中的VAs。然而,由于它们复杂的计算和模型结构使得它们难以部署在资源受限的低功耗嵌入式设备上。这封信介绍VANet,一个全卷积轻量级神经网络架构,用于检测IEGM记录中的VAs。我们的硬件INT8量化实现方法有效地使其能够在嵌入式设备上部署。结果表明,与最先进的网络架构、X-Cube-AI和Tensorflow Lite微库相比,它在准确性、存储和延迟方面实现了最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Embedded Systems Letters
IEEE Embedded Systems Letters Engineering-Control and Systems Engineering
CiteScore
3.30
自引率
0.00%
发文量
65
期刊介绍: The IEEE Embedded Systems Letters (ESL), provides a forum for rapid dissemination of latest technical advances in embedded systems and related areas in embedded software. The emphasis is on models, methods, and tools that ensure secure, correct, efficient and robust design of embedded systems and their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信