{"title":"A Molecular Communication Perspective of Alzheimer’s Disease: Impact of Amyloid Beta Oligomers on Glutamate Diffusion in the Synaptic Cleft","authors":"Nayereh FallahBagheri;Özgür B. Akan","doi":"10.1109/TMBMC.2025.3552959","DOIUrl":null,"url":null,"abstract":"Molecular communication (MC) within the synaptic cleft is vital for neurotransmitter diffusion, a process critical to cognitive functions. In Alzheimer’s Disease (AD), beta-amyloid oligomers (A<inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula>os) disrupt this communication, leading to synaptic dysfunction. This paper investigates the molecular interactions between glutamate, a key neurotransmitter, and A<inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula>os within the synaptic cleft, aiming to elucidate the underlying mechanisms of this disruption. Through stochastic modeling, we simulate the dynamics of A<inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula>os and their impact on glutamate diffusion. The findings, validated by comparing simulated results with existing experimental data, demonstrate that A<inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula>os serve as physical obstacles, hindering glutamate movement and increasing collision frequency. This impairment of synaptic transmission and long-term potentiation (LTP) by binding to receptors on the postsynaptic membrane is further validated against known molecular interaction behaviors observed in similar neurodegenerative contexts. The study also explores potential therapeutic strategies to mitigate these disruptions. By enhancing our understanding of these molecular interactions, this research contributes to the development of more effective treatments for AD, with the ultimate goal of alleviating synaptic impairments associated with the disease.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"11 2","pages":"186-200"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10934103/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Molecular communication (MC) within the synaptic cleft is vital for neurotransmitter diffusion, a process critical to cognitive functions. In Alzheimer’s Disease (AD), beta-amyloid oligomers (A$\beta $ os) disrupt this communication, leading to synaptic dysfunction. This paper investigates the molecular interactions between glutamate, a key neurotransmitter, and A$\beta $ os within the synaptic cleft, aiming to elucidate the underlying mechanisms of this disruption. Through stochastic modeling, we simulate the dynamics of A$\beta $ os and their impact on glutamate diffusion. The findings, validated by comparing simulated results with existing experimental data, demonstrate that A$\beta $ os serve as physical obstacles, hindering glutamate movement and increasing collision frequency. This impairment of synaptic transmission and long-term potentiation (LTP) by binding to receptors on the postsynaptic membrane is further validated against known molecular interaction behaviors observed in similar neurodegenerative contexts. The study also explores potential therapeutic strategies to mitigate these disruptions. By enhancing our understanding of these molecular interactions, this research contributes to the development of more effective treatments for AD, with the ultimate goal of alleviating synaptic impairments associated with the disease.
期刊介绍:
As a result of recent advances in MEMS/NEMS and systems biology, as well as the emergence of synthetic bacteria and lab/process-on-a-chip techniques, it is now possible to design chemical “circuits”, custom organisms, micro/nanoscale swarms of devices, and a host of other new systems. This success opens up a new frontier for interdisciplinary communications techniques using chemistry, biology, and other principles that have not been considered in the communications literature. The IEEE Transactions on Molecular, Biological, and Multi-Scale Communications (T-MBMSC) is devoted to the principles, design, and analysis of communication systems that use physics beyond classical electromagnetism. This includes molecular, quantum, and other physical, chemical and biological techniques; as well as new communication techniques at small scales or across multiple scales (e.g., nano to micro to macro; note that strictly nanoscale systems, 1-100 nm, are outside the scope of this journal). Original research articles on one or more of the following topics are within scope: mathematical modeling, information/communication and network theoretic analysis, standardization and industrial applications, and analytical or experimental studies on communication processes or networks in biology. Contributions on related topics may also be considered for publication. Contributions from researchers outside the IEEE’s typical audience are encouraged.