{"title":"Quorum Sensing Model Structures Inspire the Design of Quorum Quenching Strategies","authors":"Chiara Cimolato;Gianluca Selvaggio;Luca Marchetti;Giulia Giordano;Luca Schenato;Massimo Bellato","doi":"10.1109/TMBMC.2025.3554671","DOIUrl":null,"url":null,"abstract":"Quorum Sensing (QS) is a bacterial cell-to-cell communication mechanism allowing to share information about cell density, to adjust gene expression accordingly. Pathogens leverage QS to coordinate virulence and antimicrobial resistance, leading to distinctive population-level behaviors. To support rational design of synthetic biology strategies counteracting these mechanisms, we first mathematically model and compare two common QS architectures: one based on a single positive feedback loop to auto-induce signal molecule synthesis, the other including an additional positive feedback to increase signal molecule receptors production. Our comprehensive analysis of these QS structures and their equilibria highlights the differences in their bistable and hysteretic behaviors. An extensive sensitivity analysis is then performed, highlighting how parameter variations may lead to phenotype alterations in system behavior. Finally, building on our sensitivity analysis, we mathematically model four distinct QS inhibition strategies - signal molecule degradation, pharmaceutical inhibition, CRISPRi, and RNAi - which lead to the design of Quorum-Quenching (QQ) therapeutic approaches. Despite the underlying complex mechanisms, we demonstrate that the effect of the proposed QQ strategies can be captured by varying specific parameters within the QS models. We numerically analyze how these strategies affect the steady-state behavior of both QS models, identifying critical parameter thresholds for effective QS suppression.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"11 2","pages":"201-217"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10938711","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10938711/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Quorum Sensing (QS) is a bacterial cell-to-cell communication mechanism allowing to share information about cell density, to adjust gene expression accordingly. Pathogens leverage QS to coordinate virulence and antimicrobial resistance, leading to distinctive population-level behaviors. To support rational design of synthetic biology strategies counteracting these mechanisms, we first mathematically model and compare two common QS architectures: one based on a single positive feedback loop to auto-induce signal molecule synthesis, the other including an additional positive feedback to increase signal molecule receptors production. Our comprehensive analysis of these QS structures and their equilibria highlights the differences in their bistable and hysteretic behaviors. An extensive sensitivity analysis is then performed, highlighting how parameter variations may lead to phenotype alterations in system behavior. Finally, building on our sensitivity analysis, we mathematically model four distinct QS inhibition strategies - signal molecule degradation, pharmaceutical inhibition, CRISPRi, and RNAi - which lead to the design of Quorum-Quenching (QQ) therapeutic approaches. Despite the underlying complex mechanisms, we demonstrate that the effect of the proposed QQ strategies can be captured by varying specific parameters within the QS models. We numerically analyze how these strategies affect the steady-state behavior of both QS models, identifying critical parameter thresholds for effective QS suppression.
期刊介绍:
As a result of recent advances in MEMS/NEMS and systems biology, as well as the emergence of synthetic bacteria and lab/process-on-a-chip techniques, it is now possible to design chemical “circuits”, custom organisms, micro/nanoscale swarms of devices, and a host of other new systems. This success opens up a new frontier for interdisciplinary communications techniques using chemistry, biology, and other principles that have not been considered in the communications literature. The IEEE Transactions on Molecular, Biological, and Multi-Scale Communications (T-MBMSC) is devoted to the principles, design, and analysis of communication systems that use physics beyond classical electromagnetism. This includes molecular, quantum, and other physical, chemical and biological techniques; as well as new communication techniques at small scales or across multiple scales (e.g., nano to micro to macro; note that strictly nanoscale systems, 1-100 nm, are outside the scope of this journal). Original research articles on one or more of the following topics are within scope: mathematical modeling, information/communication and network theoretic analysis, standardization and industrial applications, and analytical or experimental studies on communication processes or networks in biology. Contributions on related topics may also be considered for publication. Contributions from researchers outside the IEEE’s typical audience are encouraged.