Anisotropic Diffusion Model of Communication in 2D Biofilm

IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yanahan Paramalingam;Hamidreza Arjmandi;Freya Harrison;Tara Schiller;Adam Noel
{"title":"Anisotropic Diffusion Model of Communication in 2D Biofilm","authors":"Yanahan Paramalingam;Hamidreza Arjmandi;Freya Harrison;Tara Schiller;Adam Noel","doi":"10.1109/TMBMC.2025.3552991","DOIUrl":null,"url":null,"abstract":"A biofilm is a microbial city. It consists of bacteria embedded in an extracellular polymeric substance (EPS) that functions as a protective barrier. Quorum sensing (QS) is a method of bacterial communication, where autoinducers (AIs) propagate via diffusion through the EPS and water channels within the biofilm. This diffusion process is anisotropic due to varying densities between the EPS and water channels. This study introduces a 2D anisotropic diffusion model for molecular communication (MC) within biofilms, analyzing information propagation between a point-to-point transmitter (TX) and receiver (RX) in bounded space. The channel impulse response is derived using Green’s function for concentration (GFC) and is validated with particle-based simulation (PBS). The outcomes reveal similar results for both isotropic and anisotropic diffusion when the TX is centrally located due to symmetry. However, anisotropic conditions lead to greater diffusion peaks when the TX is positioned off-center. Additionally, the propagation of AIs is inversely proportional to both overall biofilm size and diffusion coefficient values. It is hypothesized that anisotropic diffusion supports faster responses to hostile environmental changes because signals can propagate faster from the edge of the biofilm to the center.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"11 2","pages":"176-185"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10942455/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A biofilm is a microbial city. It consists of bacteria embedded in an extracellular polymeric substance (EPS) that functions as a protective barrier. Quorum sensing (QS) is a method of bacterial communication, where autoinducers (AIs) propagate via diffusion through the EPS and water channels within the biofilm. This diffusion process is anisotropic due to varying densities between the EPS and water channels. This study introduces a 2D anisotropic diffusion model for molecular communication (MC) within biofilms, analyzing information propagation between a point-to-point transmitter (TX) and receiver (RX) in bounded space. The channel impulse response is derived using Green’s function for concentration (GFC) and is validated with particle-based simulation (PBS). The outcomes reveal similar results for both isotropic and anisotropic diffusion when the TX is centrally located due to symmetry. However, anisotropic conditions lead to greater diffusion peaks when the TX is positioned off-center. Additionally, the propagation of AIs is inversely proportional to both overall biofilm size and diffusion coefficient values. It is hypothesized that anisotropic diffusion supports faster responses to hostile environmental changes because signals can propagate faster from the edge of the biofilm to the center.
二维生物膜中通信的各向异性扩散模型
生物膜是一个微生物城市。它由嵌入细胞外聚合物质(EPS)的细菌组成,该物质起保护屏障的作用。群体感应(QS)是细菌交流的一种方法,其中自诱导剂(AIs)通过生物膜内EPS和水通道扩散繁殖。由于EPS和水通道之间的密度不同,这种扩散过程是各向异性的。本研究引入了生物膜内分子通信(MC)的二维各向异性扩散模型,分析了有界空间中点对点发射器(TX)和接收器(RX)之间的信息传播。利用格林浓度函数(GFC)推导了通道脉冲响应,并用基于粒子的模拟(PBS)进行了验证。结果表明,当TX位于中心位置时,由于对称性,各向同性和各向异性扩散的结果相似。然而,各向异性条件下,当TX位置偏离中心时,会导致更大的扩散峰。此外,AIs的繁殖与总体生物膜尺寸和扩散系数值成反比。假设各向异性扩散支持对恶劣环境变化的更快响应,因为信号可以更快地从生物膜的边缘传播到中心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
13.60%
发文量
23
期刊介绍: As a result of recent advances in MEMS/NEMS and systems biology, as well as the emergence of synthetic bacteria and lab/process-on-a-chip techniques, it is now possible to design chemical “circuits”, custom organisms, micro/nanoscale swarms of devices, and a host of other new systems. This success opens up a new frontier for interdisciplinary communications techniques using chemistry, biology, and other principles that have not been considered in the communications literature. The IEEE Transactions on Molecular, Biological, and Multi-Scale Communications (T-MBMSC) is devoted to the principles, design, and analysis of communication systems that use physics beyond classical electromagnetism. This includes molecular, quantum, and other physical, chemical and biological techniques; as well as new communication techniques at small scales or across multiple scales (e.g., nano to micro to macro; note that strictly nanoscale systems, 1-100 nm, are outside the scope of this journal). Original research articles on one or more of the following topics are within scope: mathematical modeling, information/communication and network theoretic analysis, standardization and industrial applications, and analytical or experimental studies on communication processes or networks in biology. Contributions on related topics may also be considered for publication. Contributions from researchers outside the IEEE’s typical audience are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信