{"title":"Hybrid Recurrent Neural Network for Signal-Dependent Noise Suppression in Molecular Communication","authors":"Cheng Xiang;Yaqing Zhang;Yu Huang;Weiqiang Tan;Xuan Chen;Miaowen Wen","doi":"10.1109/TMBMC.2025.3546208","DOIUrl":null,"url":null,"abstract":"Molecular communication (MC) employs chemical molecules for information transfer in environments where electromagnetic signals are ineffective. However, the diffusion mechanism introduces signal-dependent noise (SDN), complicating accurate signal recovery. Traditional model-based methods struggle to handle SDN’s complex dynamics and depend heavily on optimal parameter tuning, limiting their adaptability to temporal variations. To tackle these challenges, this paper introduces a hybrid recurrent neural network (RNN) model that effectively captures both short- and long-term dependencies within MC signals, surpassing the performance of single RNN models and traditional approaches. This model offers a promising data-driven solution for noise mitigation in MC, with its effectiveness validated through numerical simulation results.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"11 2","pages":"283-291"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10904174/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Molecular communication (MC) employs chemical molecules for information transfer in environments where electromagnetic signals are ineffective. However, the diffusion mechanism introduces signal-dependent noise (SDN), complicating accurate signal recovery. Traditional model-based methods struggle to handle SDN’s complex dynamics and depend heavily on optimal parameter tuning, limiting their adaptability to temporal variations. To tackle these challenges, this paper introduces a hybrid recurrent neural network (RNN) model that effectively captures both short- and long-term dependencies within MC signals, surpassing the performance of single RNN models and traditional approaches. This model offers a promising data-driven solution for noise mitigation in MC, with its effectiveness validated through numerical simulation results.
期刊介绍:
As a result of recent advances in MEMS/NEMS and systems biology, as well as the emergence of synthetic bacteria and lab/process-on-a-chip techniques, it is now possible to design chemical “circuits”, custom organisms, micro/nanoscale swarms of devices, and a host of other new systems. This success opens up a new frontier for interdisciplinary communications techniques using chemistry, biology, and other principles that have not been considered in the communications literature. The IEEE Transactions on Molecular, Biological, and Multi-Scale Communications (T-MBMSC) is devoted to the principles, design, and analysis of communication systems that use physics beyond classical electromagnetism. This includes molecular, quantum, and other physical, chemical and biological techniques; as well as new communication techniques at small scales or across multiple scales (e.g., nano to micro to macro; note that strictly nanoscale systems, 1-100 nm, are outside the scope of this journal). Original research articles on one or more of the following topics are within scope: mathematical modeling, information/communication and network theoretic analysis, standardization and industrial applications, and analytical or experimental studies on communication processes or networks in biology. Contributions on related topics may also be considered for publication. Contributions from researchers outside the IEEE’s typical audience are encouraged.