{"title":"DPM-Solver-2M: A Fast Multistep DPM-Solver-Based Scheme for Real-Time MIMO Channel Estimation","authors":"Ravi Kumar;Manivasakan Rathinam","doi":"10.1109/OJCOMS.2025.3574087","DOIUrl":null,"url":null,"abstract":"Real-time multiple-input multiple-output (MIMO) channel estimation poses a major challenge due to stringent low-latency constraints. We propose a multistep fast ordinary differential equation (ODE)-based diffusion probabilistic model (DPM), DPM-Solver-2M, for MIMO channel estimation, significantly reducing the number of inference steps while maintaining high accuracy. Unlike conventional discrete-time DPMs, our approach reformulates a lightweight discrete noise prediction model into a continuous-time framework, enabling ODE-based fast multistep solvers with efficient numerical methods. This scheme retains the advantages of discrete models, such as low complexity, while achieving a <inline-formula> <tex-math>$\\sim 4\\times $ </tex-math></inline-formula> speedup in terms of inference steps or number of function evaluations (NFE) during the reverse process over Markovian or ancestral sampling-based DPM estimators, with only a marginal performance trade-off. Theoretical analysis of solver convergence corroborates our simulation results, demonstrating rapid convergence in just 10–15 solver steps, making our approach highly suitable for real-time wireless systems. In addition to achieving strong performance under ideal conditions, our simulation results reveal that the proposed model is robust to changes in the signal-to-noise ratio (SNR) of the observed (received) signal and generalizes well across different wireless channel models for the small number of steps.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"6 ","pages":"4742-4755"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11016071","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11016071/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Real-time multiple-input multiple-output (MIMO) channel estimation poses a major challenge due to stringent low-latency constraints. We propose a multistep fast ordinary differential equation (ODE)-based diffusion probabilistic model (DPM), DPM-Solver-2M, for MIMO channel estimation, significantly reducing the number of inference steps while maintaining high accuracy. Unlike conventional discrete-time DPMs, our approach reformulates a lightweight discrete noise prediction model into a continuous-time framework, enabling ODE-based fast multistep solvers with efficient numerical methods. This scheme retains the advantages of discrete models, such as low complexity, while achieving a $\sim 4\times $ speedup in terms of inference steps or number of function evaluations (NFE) during the reverse process over Markovian or ancestral sampling-based DPM estimators, with only a marginal performance trade-off. Theoretical analysis of solver convergence corroborates our simulation results, demonstrating rapid convergence in just 10–15 solver steps, making our approach highly suitable for real-time wireless systems. In addition to achieving strong performance under ideal conditions, our simulation results reveal that the proposed model is robust to changes in the signal-to-noise ratio (SNR) of the observed (received) signal and generalizes well across different wireless channel models for the small number of steps.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.