{"title":"MASSFormer: Mobility-Aware Spectrum Sensing Using Transformer-Driven Tiered Structure","authors":"Dimpal Janu;Faisel Mushtaq;Sandeep Mandia;Kuldeep Singh;Sandeep Kumar","doi":"10.1109/LCOMM.2025.3557217","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a novel mobility-aware transformer-driven tiered structure (MASSFormer) based cooperative spectrum sensing method that effectively models the spatio-temporal dynamics of user movements. Unlike existing methods, our method considers a dynamic scenario involving mobile primary users (PUs) and secondary users (SUs) and addresses the complexities introduced by user mobility. The transformer architecture utilizes an attention mechanism, allowing the proposed method to model the temporal dynamics of user mobility by effectively capturing long-range dependencies. The proposed method first computes tokens from the sequence of covariance matrices (CMs) for each SU. It processes them in parallel using the SU-transformer to learn the spatio-temporal features at SU-level. Subsequently, the collaborative transformer learns the group-level PU state from all SU-level feature representations. The main goal of predicting the PU states at each SU-level and group-level is to improve detection performance even more. The proposed method is tested under imperfect reporting channel scenarios to show robustness. The efficacy of our method is validated with simulation results that demonstrate its higher performance compared to existing methods in terms of detection probability <inline-formula> <tex-math>$P_{d}$ </tex-math></inline-formula>, sensing error, and classification accuracy (CA).","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"29 6","pages":"1220-1224"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10947748/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we develop a novel mobility-aware transformer-driven tiered structure (MASSFormer) based cooperative spectrum sensing method that effectively models the spatio-temporal dynamics of user movements. Unlike existing methods, our method considers a dynamic scenario involving mobile primary users (PUs) and secondary users (SUs) and addresses the complexities introduced by user mobility. The transformer architecture utilizes an attention mechanism, allowing the proposed method to model the temporal dynamics of user mobility by effectively capturing long-range dependencies. The proposed method first computes tokens from the sequence of covariance matrices (CMs) for each SU. It processes them in parallel using the SU-transformer to learn the spatio-temporal features at SU-level. Subsequently, the collaborative transformer learns the group-level PU state from all SU-level feature representations. The main goal of predicting the PU states at each SU-level and group-level is to improve detection performance even more. The proposed method is tested under imperfect reporting channel scenarios to show robustness. The efficacy of our method is validated with simulation results that demonstrate its higher performance compared to existing methods in terms of detection probability $P_{d}$ , sensing error, and classification accuracy (CA).
期刊介绍:
The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.