Trinh Van Chien;Nguyen Minh Quan;Oh-Soon Shin;Van-Dinh Nguyen
{"title":"Metaheuristic Optimization of Trajectory and Dynamic Time Splitting for UAV Communication Systems","authors":"Trinh Van Chien;Nguyen Minh Quan;Oh-Soon Shin;Van-Dinh Nguyen","doi":"10.1109/LCOMM.2025.3556714","DOIUrl":null,"url":null,"abstract":"The integration of unmanned aerial vehicles (UAVs) into wireless communication systems has emerged as a transformative approach, promising cost-efficient connectivity. This letter addresses the optimization of the dynamic time-splitting ratio and flight trajectory for a communication system linking a ground base station to the UAV equipped with backscatter devices (referred to as UB), and from UB to an end user. Given the inherent non-convexity of the problem, we develop two meta-heuristic-based approaches inspired by genetic algorithm and particle swarm optimization to enhance the total achievable rate while reducing computational complexity. Numerical results demonstrate the effectiveness of these meta-heuristic solutions, showcasing significant improvements in the achievable rate and computation time compared to existing benchmarks.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"29 6","pages":"1200-1204"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10947208/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of unmanned aerial vehicles (UAVs) into wireless communication systems has emerged as a transformative approach, promising cost-efficient connectivity. This letter addresses the optimization of the dynamic time-splitting ratio and flight trajectory for a communication system linking a ground base station to the UAV equipped with backscatter devices (referred to as UB), and from UB to an end user. Given the inherent non-convexity of the problem, we develop two meta-heuristic-based approaches inspired by genetic algorithm and particle swarm optimization to enhance the total achievable rate while reducing computational complexity. Numerical results demonstrate the effectiveness of these meta-heuristic solutions, showcasing significant improvements in the achievable rate and computation time compared to existing benchmarks.
期刊介绍:
The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.