Impacts of rock components on the competitive adsorption of carbon dioxide and methane in organic shales

IF 5.5 0 ENERGY & FUELS
Ibrahim Gomaa, Isa Silveira de Araujo, Zoya Heidari, D. Nicolas Espinoza
{"title":"Impacts of rock components on the competitive adsorption of carbon dioxide and methane in organic shales","authors":"Ibrahim Gomaa,&nbsp;Isa Silveira de Araujo,&nbsp;Zoya Heidari,&nbsp;D. Nicolas Espinoza","doi":"10.1016/j.jgsce.2025.205681","DOIUrl":null,"url":null,"abstract":"<div><div>The competitive adsorption of CO<sub>2</sub> and CH<sub>4</sub> on kerogen and clay surfaces significantly affects CO<sub>2</sub> sequestration and enhanced gas recovery (EGR) in organic shale-gas reservoirs. Conventional laboratory methods struggle to quantify individual gas adsorption in CO<sub>2</sub>:CH<sub>4</sub> mixtures. To address this challenge, we aim to quantify (a) the effects of kerogen type, pore structure, and thermal maturity on CO<sub>2</sub>:CH<sub>4</sub> competitive adsorption, (b) the impact of clay surface chemistry on the adsorption capacity of organic shale formations, and (c) the influence of different moisture and oil contents on the adsorption capacity of kerogen and clay structures. We used Grand Canonical Monte Carlo (GCMC) simulations (verified against previously documented experimental measurements) to investigate how kerogen composition, pore structure, and thermal maturity, water/oil saturation, and clay surface chemistry influence CO<sub>2</sub> adsorption under reservoir conditions.</div><div>Results suggest that changing kerogen from type I to III increases CO<sub>2</sub> adsorption from 1.42 mmol/g to 5.56 mmol/g at 330 K and 20 MPa. Increasing thermal maturity significantly affected CO<sub>2</sub> adsorption, though raising reservoir pressure from 1 MPa to 20 MPa reduces CO<sub>2</sub>/CH<sub>4</sub> selectivity. Moreover, the presence of moisture and oil decrease maximum CO<sub>2</sub> adsorption. For clay minerals, the positively charged K-illite enhances CO<sub>2</sub> adsorption by 133 % compared to negatively charged illite and exhibits a CO<sub>2</sub>/CH<sub>4</sub> selectivity of 17.2 versus 1.48 in kaolinite. These findings emphasize that reservoir conditions as well as composition critically affect adsorption capacity and selectivity. The introduced molecular simulation framework enabled extensive sensitivity analyses of factors influencing CO<sub>2</sub> storage at conditions that extend beyond the reach of conventional laboratory experiments, which potentially enables the optimization of CO<sub>2</sub> storage strategies in organic shale-gas reservoirs.</div></div>","PeriodicalId":100568,"journal":{"name":"Gas Science and Engineering","volume":"142 ","pages":"Article 205681"},"PeriodicalIF":5.5000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gas Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949908925001451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The competitive adsorption of CO2 and CH4 on kerogen and clay surfaces significantly affects CO2 sequestration and enhanced gas recovery (EGR) in organic shale-gas reservoirs. Conventional laboratory methods struggle to quantify individual gas adsorption in CO2:CH4 mixtures. To address this challenge, we aim to quantify (a) the effects of kerogen type, pore structure, and thermal maturity on CO2:CH4 competitive adsorption, (b) the impact of clay surface chemistry on the adsorption capacity of organic shale formations, and (c) the influence of different moisture and oil contents on the adsorption capacity of kerogen and clay structures. We used Grand Canonical Monte Carlo (GCMC) simulations (verified against previously documented experimental measurements) to investigate how kerogen composition, pore structure, and thermal maturity, water/oil saturation, and clay surface chemistry influence CO2 adsorption under reservoir conditions.
Results suggest that changing kerogen from type I to III increases CO2 adsorption from 1.42 mmol/g to 5.56 mmol/g at 330 K and 20 MPa. Increasing thermal maturity significantly affected CO2 adsorption, though raising reservoir pressure from 1 MPa to 20 MPa reduces CO2/CH4 selectivity. Moreover, the presence of moisture and oil decrease maximum CO2 adsorption. For clay minerals, the positively charged K-illite enhances CO2 adsorption by 133 % compared to negatively charged illite and exhibits a CO2/CH4 selectivity of 17.2 versus 1.48 in kaolinite. These findings emphasize that reservoir conditions as well as composition critically affect adsorption capacity and selectivity. The introduced molecular simulation framework enabled extensive sensitivity analyses of factors influencing CO2 storage at conditions that extend beyond the reach of conventional laboratory experiments, which potentially enables the optimization of CO2 storage strategies in organic shale-gas reservoirs.
岩石组分对有机页岩中二氧化碳和甲烷竞争吸附的影响
CO2和CH4在干酪根和粘土表面的竞争吸附对有机页岩气藏的CO2固存和提高采收率(EGR)有重要影响。传统的实验室方法难以量化CO2:CH4混合物中单个气体的吸附。为了应对这一挑战,我们的目标是量化(a)干酪根类型、孔隙结构和热成熟度对CO2:CH4竞争吸附的影响,(b)粘土表面化学对有机页岩地层吸附能力的影响,以及(c)不同含水量和含油量对干酪根和粘土结构吸附能力的影响。我们使用了大规范蒙特卡罗(GCMC)模拟(与先前记录的实验测量结果进行了验证)来研究在储层条件下,干酪根组成、孔隙结构、热成熟度、水/油饱和度和粘土表面化学如何影响CO2吸附。结果表明,在330 K、20 MPa条件下,将干酪根由I型改为III型,CO2吸附量由1.42 mmol/g增加到5.56 mmol/g。增加热成熟度会显著影响CO2吸附,但将储层压力从1 MPa提高到20 MPa会降低CO2/CH4的选择性。此外,水分和油的存在最大程度地降低了CO2的吸附。对于粘土矿物,与带负电的伊利石相比,带正电的k -伊利石对CO2的吸附能力提高了133%,CO2/CH4的选择性为17.2,而高岭石为1.48。这些发现强调了储层条件和成分对吸附能力和选择性的重要影响。引入的分子模拟框架能够在超出常规实验室实验范围的条件下对影响CO2储存的因素进行广泛的敏感性分析,从而有可能优化有机页岩气藏的CO2储存策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信