{"title":"A comparison of machine learning models for predicting Vibrio parahaemolyticus in oysters","authors":"Nodali Ndraha , Hsin-I Hsiao","doi":"10.1016/j.mran.2025.100345","DOIUrl":null,"url":null,"abstract":"<div><div><em>Vibrio parahaemolyticus</em>, a major seafood pathogen, threatens public health as oyster consumption rises. We evaluated 14 machine learning models to predict its concentrations in oysters, achieving high accuracy (Concordance Correlation Coefficient, CCC > 0.85 training, > 0.9 testing, except bag-MARS) across diverse algorithms. Processing times varied from 23 min (KNN) to 162 min (bag-RPart), highlighting computational trade-offs. Five top models—Elastic Net (EN), Random Forest (RF), XGBoost, Light Gradient-Boosting Machine (L-GBM), and Cubist (39–92 min)—were selected for their performance and efficiency, forming a robust toolkit for shellfish safety monitoring. Variable importance and partial dependence plots identified sea surface temperature (SST) and wind as primary drivers, with SST thresholds of 16–26 °C driving proliferation and wind showing mixed effects (negative >4 m/s, positive >6 m/s). Precipitation, salinity (>19 ppm), and pH (7.5–7.7) played supplementary roles. Lagged variables (e.g., SST_imX_25) underscored temporal dynamics, supporting real-time monitoring and risk assessment strategies.</div></div>","PeriodicalId":48593,"journal":{"name":"Microbial Risk Analysis","volume":"30 ","pages":"Article 100345"},"PeriodicalIF":3.0000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Risk Analysis","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352352225000052","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Vibrio parahaemolyticus, a major seafood pathogen, threatens public health as oyster consumption rises. We evaluated 14 machine learning models to predict its concentrations in oysters, achieving high accuracy (Concordance Correlation Coefficient, CCC > 0.85 training, > 0.9 testing, except bag-MARS) across diverse algorithms. Processing times varied from 23 min (KNN) to 162 min (bag-RPart), highlighting computational trade-offs. Five top models—Elastic Net (EN), Random Forest (RF), XGBoost, Light Gradient-Boosting Machine (L-GBM), and Cubist (39–92 min)—were selected for their performance and efficiency, forming a robust toolkit for shellfish safety monitoring. Variable importance and partial dependence plots identified sea surface temperature (SST) and wind as primary drivers, with SST thresholds of 16–26 °C driving proliferation and wind showing mixed effects (negative >4 m/s, positive >6 m/s). Precipitation, salinity (>19 ppm), and pH (7.5–7.7) played supplementary roles. Lagged variables (e.g., SST_imX_25) underscored temporal dynamics, supporting real-time monitoring and risk assessment strategies.
期刊介绍:
The journal Microbial Risk Analysis accepts articles dealing with the study of risk analysis applied to microbial hazards. Manuscripts should at least cover any of the components of risk assessment (risk characterization, exposure assessment, etc.), risk management and/or risk communication in any microbiology field (clinical, environmental, food, veterinary, etc.). This journal also accepts article dealing with predictive microbiology, quantitative microbial ecology, mathematical modeling, risk studies applied to microbial ecology, quantitative microbiology for epidemiological studies, statistical methods applied to microbiology, and laws and regulatory policies aimed at lessening the risk of microbial hazards. Work focusing on risk studies of viruses, parasites, microbial toxins, antimicrobial resistant organisms, genetically modified organisms (GMOs), and recombinant DNA products are also acceptable.