Abnormal cascading dynamics in transportation networks with a dynamic origin–destination demand matrix

IF 3.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Jianwei Wang, Hexin Huang, Yue Liu, Yanfeng Zheng
{"title":"Abnormal cascading dynamics in transportation networks with a dynamic origin–destination demand matrix","authors":"Jianwei Wang,&nbsp;Hexin Huang,&nbsp;Yue Liu,&nbsp;Yanfeng Zheng","doi":"10.1016/j.physa.2025.130713","DOIUrl":null,"url":null,"abstract":"<div><div>In real-world road networks, origin–destination (OD) demand dynamics, influenced by origin capacity and destination attractiveness, determine network load. For instance, weekday mornings see high travel demand from residential to commercial areas, shaping the OD matrix critical for transportation efficiency. Our study introduces a dynamic OD demand matrix and a novel method to gauge initial network edge load. This informs a new cascading failure model with adjustable parameters: the generation parameter <span><math><mi>α</mi></math></span>, representing the intensity of departure willingness at origin nodes; the attraction parameter <span><math><mi>β</mi></math></span>, capturing the relative attractiveness of destination nodes; and the capability parameter <span><math><mi>γ</mi></math></span>, reflecting the capacity of each edge to accommodate excess load. Simulation across three transportation networks reveals two phases of cascading failures: initial mild propagation followed by rapid collapse, linked to connectivity shifts. Introducing a Gaussian-corrected distance factor mitigates rapid collapse risks. Analysis of WS and BA network models underscores the importance of a balanced load-to-initial load ratio for network stability. Effective management of subnet loads is crucial to achieve this balance, ensuring robust network performance and resilience.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"674 ","pages":"Article 130713"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437125003656","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In real-world road networks, origin–destination (OD) demand dynamics, influenced by origin capacity and destination attractiveness, determine network load. For instance, weekday mornings see high travel demand from residential to commercial areas, shaping the OD matrix critical for transportation efficiency. Our study introduces a dynamic OD demand matrix and a novel method to gauge initial network edge load. This informs a new cascading failure model with adjustable parameters: the generation parameter α, representing the intensity of departure willingness at origin nodes; the attraction parameter β, capturing the relative attractiveness of destination nodes; and the capability parameter γ, reflecting the capacity of each edge to accommodate excess load. Simulation across three transportation networks reveals two phases of cascading failures: initial mild propagation followed by rapid collapse, linked to connectivity shifts. Introducing a Gaussian-corrected distance factor mitigates rapid collapse risks. Analysis of WS and BA network models underscores the importance of a balanced load-to-initial load ratio for network stability. Effective management of subnet loads is crucial to achieve this balance, ensuring robust network performance and resilience.
具有动态始发-目的地需求矩阵的交通网络中的异常级联动力学
在现实世界的道路网络中,起点-终点(OD)需求动态受起点容量和目的地吸引力的影响,决定了网络负荷。例如,工作日早晨从住宅到商业区的旅行需求很高,形成了对运输效率至关重要的OD矩阵。我们的研究引入了一个动态OD需求矩阵和一种测量网络初始边缘负载的新方法。这就提出了一个参数可调的级联失效模型:生成参数α,表示初始节点的离开意愿强度;吸引力参数β,捕获目标节点的相对吸引力;和能力参数γ,反映了每条边容纳多余负载的能力。对三个交通网络的模拟揭示了级联故障的两个阶段:最初的轻微传播,随后是与连通性变化相关的快速崩溃。引入高斯校正的距离因子减轻了快速坍塌的风险。对WS和BA网络模型的分析强调了平衡的负载-初始负载比对网络稳定性的重要性。有效的子网负载管理对于实现这种平衡至关重要,从而确保网络的强大性能和弹性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
9.10%
发文量
852
审稿时长
6.6 months
期刊介绍: Physica A: Statistical Mechanics and its Applications Recognized by the European Physical Society Physica A publishes research in the field of statistical mechanics and its applications. Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents. Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信