Global linearization of asymptotically stable systems without hyperbolicity

IF 2.1 3区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
Matthew D. Kvalheim , Eduardo D. Sontag
{"title":"Global linearization of asymptotically stable systems without hyperbolicity","authors":"Matthew D. Kvalheim ,&nbsp;Eduardo D. Sontag","doi":"10.1016/j.sysconle.2025.106163","DOIUrl":null,"url":null,"abstract":"<div><div>We give a proof of an extension of the Hartman-Grobman theorem to nonhyperbolic but asymptotically stable equilibria of vector fields. Moreover, the linearizing topological conjugacy is (i) defined on the entire basin of attraction if the vector field is complete, and (ii) a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>k</mi><mo>≥</mo><mn>1</mn></mrow></msup></math></span>-diffeomorphism on the complement of the equilibrium if the vector field is <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span> and the underlying space is not 5-dimensional. We also show that the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span> statement in the 5-dimensional case is equivalent to the 4-dimensional smooth Poincaré conjecture.</div></div>","PeriodicalId":49450,"journal":{"name":"Systems & Control Letters","volume":"203 ","pages":"Article 106163"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems & Control Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167691125001458","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

We give a proof of an extension of the Hartman-Grobman theorem to nonhyperbolic but asymptotically stable equilibria of vector fields. Moreover, the linearizing topological conjugacy is (i) defined on the entire basin of attraction if the vector field is complete, and (ii) a Ck1-diffeomorphism on the complement of the equilibrium if the vector field is Ck and the underlying space is not 5-dimensional. We also show that the Ck statement in the 5-dimensional case is equivalent to the 4-dimensional smooth Poincaré conjecture.
无双曲渐近稳定系统的全局线性化
给出了Hartman-Grobman定理在向量场非双曲渐近稳定平衡点上的推广证明。此外,如果向量场是完备的,则线性化拓扑共轭是(i)在整个吸引盆上定义的;如果向量场是Ck且底层空间不是5维,则在平衡的补上定义Ck≥1-微分同构。我们还证明了5维情况下的Ck命题等价于4维光滑庞卡罗猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Systems & Control Letters
Systems & Control Letters 工程技术-运筹学与管理科学
CiteScore
4.60
自引率
3.80%
发文量
144
审稿时长
6 months
期刊介绍: Founded in 1981 by two of the pre-eminent control theorists, Roger Brockett and Jan Willems, Systems & Control Letters is one of the leading journals in the field of control theory. The aim of the journal is to allow dissemination of relatively concise but highly original contributions whose high initial quality enables a relatively rapid review process. All aspects of the fields of systems and control are covered, especially mathematically-oriented and theoretical papers that have a clear relevance to engineering, physical and biological sciences, and even economics. Application-oriented papers with sophisticated and rigorous mathematical elements are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信