Elena Capitanini , Laura Talarico , Sara De Vincentiis , Chiara Giacomelli , Sara Vitolo , Lorenzo Da Palmata , Laura Marchetti , Elisabetta Ferraro , Maria Letizia Trincavelli , Vittoria Raffa
{"title":"Force induces axon growth in inhibitory conditions","authors":"Elena Capitanini , Laura Talarico , Sara De Vincentiis , Chiara Giacomelli , Sara Vitolo , Lorenzo Da Palmata , Laura Marchetti , Elisabetta Ferraro , Maria Letizia Trincavelli , Vittoria Raffa","doi":"10.1016/j.engreg.2025.05.003","DOIUrl":null,"url":null,"abstract":"<div><div>Axon navigation is guided by spatial patterns of chemical and physical cues in the developing central nervous system. Following injury, these patterns are disrupted, the microenvironment evolves rapidly, and inhibitory molecules create a barrier to the regeneration of severed axons. We have recently developed a technology called nano-pulling designed to stimulate axon growth and regeneration by modulating neuronal mechanotransduction. In this paper, we demonstrate that nano-pulling can induce axon growth in hippocampal neurons even in the presence of repulsive cues, such as chondroitin sulfate proteoglycans, semaphorin 3A, microglial activation, and pro-inflammatory cytokines. Nano-pulling can also enhance the elongation of neural processes in neural progenitors transplanted into an organotypic spinal cord injury model that mimics the tissue complexity and inflammation seen in <em>in vivo</em> models. Our data suggest that nano-pulling could be used as a strategy to manipulate axon growth, overcoming certain extrinsic inhibitory factors.</div></div>","PeriodicalId":72919,"journal":{"name":"Engineered regeneration","volume":"6 ","pages":"Pages 133-145"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineered regeneration","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266613812500009X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Axon navigation is guided by spatial patterns of chemical and physical cues in the developing central nervous system. Following injury, these patterns are disrupted, the microenvironment evolves rapidly, and inhibitory molecules create a barrier to the regeneration of severed axons. We have recently developed a technology called nano-pulling designed to stimulate axon growth and regeneration by modulating neuronal mechanotransduction. In this paper, we demonstrate that nano-pulling can induce axon growth in hippocampal neurons even in the presence of repulsive cues, such as chondroitin sulfate proteoglycans, semaphorin 3A, microglial activation, and pro-inflammatory cytokines. Nano-pulling can also enhance the elongation of neural processes in neural progenitors transplanted into an organotypic spinal cord injury model that mimics the tissue complexity and inflammation seen in in vivo models. Our data suggest that nano-pulling could be used as a strategy to manipulate axon growth, overcoming certain extrinsic inhibitory factors.