Force induces axon growth in inhibitory conditions

Q1 Medicine
Elena Capitanini , Laura Talarico , Sara De Vincentiis , Chiara Giacomelli , Sara Vitolo , Lorenzo Da Palmata , Laura Marchetti , Elisabetta Ferraro , Maria Letizia Trincavelli , Vittoria Raffa
{"title":"Force induces axon growth in inhibitory conditions","authors":"Elena Capitanini ,&nbsp;Laura Talarico ,&nbsp;Sara De Vincentiis ,&nbsp;Chiara Giacomelli ,&nbsp;Sara Vitolo ,&nbsp;Lorenzo Da Palmata ,&nbsp;Laura Marchetti ,&nbsp;Elisabetta Ferraro ,&nbsp;Maria Letizia Trincavelli ,&nbsp;Vittoria Raffa","doi":"10.1016/j.engreg.2025.05.003","DOIUrl":null,"url":null,"abstract":"<div><div>Axon navigation is guided by spatial patterns of chemical and physical cues in the developing central nervous system. Following injury, these patterns are disrupted, the microenvironment evolves rapidly, and inhibitory molecules create a barrier to the regeneration of severed axons. We have recently developed a technology called nano-pulling designed to stimulate axon growth and regeneration by modulating neuronal mechanotransduction. In this paper, we demonstrate that nano-pulling can induce axon growth in hippocampal neurons even in the presence of repulsive cues, such as chondroitin sulfate proteoglycans, semaphorin 3A, microglial activation, and pro-inflammatory cytokines. Nano-pulling can also enhance the elongation of neural processes in neural progenitors transplanted into an organotypic spinal cord injury model that mimics the tissue complexity and inflammation seen in <em>in vivo</em> models. Our data suggest that nano-pulling could be used as a strategy to manipulate axon growth, overcoming certain extrinsic inhibitory factors.</div></div>","PeriodicalId":72919,"journal":{"name":"Engineered regeneration","volume":"6 ","pages":"Pages 133-145"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineered regeneration","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266613812500009X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Axon navigation is guided by spatial patterns of chemical and physical cues in the developing central nervous system. Following injury, these patterns are disrupted, the microenvironment evolves rapidly, and inhibitory molecules create a barrier to the regeneration of severed axons. We have recently developed a technology called nano-pulling designed to stimulate axon growth and regeneration by modulating neuronal mechanotransduction. In this paper, we demonstrate that nano-pulling can induce axon growth in hippocampal neurons even in the presence of repulsive cues, such as chondroitin sulfate proteoglycans, semaphorin 3A, microglial activation, and pro-inflammatory cytokines. Nano-pulling can also enhance the elongation of neural processes in neural progenitors transplanted into an organotypic spinal cord injury model that mimics the tissue complexity and inflammation seen in in vivo models. Our data suggest that nano-pulling could be used as a strategy to manipulate axon growth, overcoming certain extrinsic inhibitory factors.

Abstract Image

力在抑制条件下诱导轴突生长
轴突导航是由发育中的中枢神经系统的化学和物理线索的空间模式引导的。损伤后,这些模式被破坏,微环境迅速进化,抑制分子对断裂轴突的再生产生障碍。我们最近开发了一种叫做纳米拉的技术,旨在通过调节神经元的机械转导来刺激轴突的生长和再生。在本文中,我们证明了纳米拉力可以诱导海马神经元轴突生长,即使存在排斥信号,如硫酸软骨素蛋白聚糖、信号蛋白3A、小胶质细胞激活和促炎细胞因子。纳米牵拉还可以增强神经祖细胞移植到器官型脊髓损伤模型中的神经过程的伸长,该模型模仿体内模型中的组织复杂性和炎症。我们的数据表明,纳米拉力可以作为一种策略来操纵轴突的生长,克服某些外在的抑制因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineered regeneration
Engineered regeneration Biomaterials, Medicine and Dentistry (General), Biotechnology, Biomedical Engineering
CiteScore
22.90
自引率
0.00%
发文量
0
审稿时长
33 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信