Size effects in 3D-printed polymeric lattices under three-point bending: Manufacturing, testing, and modelling

IF 4.2 2区 工程技术 Q1 MECHANICS
Wanderson F. dos Santos , Alina S.L. Rodrigues , Igor A. Rodrigues Lopes , Francisco M. Andrade Pires , Sergio P.B. Proença , Zilda C. Silveira
{"title":"Size effects in 3D-printed polymeric lattices under three-point bending: Manufacturing, testing, and modelling","authors":"Wanderson F. dos Santos ,&nbsp;Alina S.L. Rodrigues ,&nbsp;Igor A. Rodrigues Lopes ,&nbsp;Francisco M. Andrade Pires ,&nbsp;Sergio P.B. Proença ,&nbsp;Zilda C. Silveira","doi":"10.1016/j.euromechsol.2025.105728","DOIUrl":null,"url":null,"abstract":"<div><div>Architected lattice structures often exhibit pronounced size effects that challenge conventional modelling strategies. This contribution presents a combined experimental and numerical investigation of size effects in 3D-printed lattice beams under three-point bending. Specimens with triangular and square unit cells, manufactured using affordable Fused Deposition Modelling (FDM) with polyethylene terephthalate glycol (PETG), are tested at different lattice refinements while maintaining constant overall dimensions and solid volume fraction. The experiments reveal clear size-dependent behaviour in terms of stiffness, strength, and failure modes. To model these effects, three numerical strategies are employed: Direct Numerical Simulations (DNS), and multi-scale approaches based on first- and second-order computational homogenisation (FE<sup>2</sup>).DNS provides accurate predictions but is computationally expensive for fine lattices. Second-order FE<sup>2</sup> captures size effects more efficiently, particularly when micro-scale periodic boundary conditions are applied, although it may overestimate responses for coarser lattices. This work critically assesses the accuracy and applicability of each modelling approach, providing valuable insight into the design and simulation of architected structures where scale-dependent behaviour is significant.</div></div>","PeriodicalId":50483,"journal":{"name":"European Journal of Mechanics A-Solids","volume":"114 ","pages":"Article 105728"},"PeriodicalIF":4.2000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics A-Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997753825001627","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Architected lattice structures often exhibit pronounced size effects that challenge conventional modelling strategies. This contribution presents a combined experimental and numerical investigation of size effects in 3D-printed lattice beams under three-point bending. Specimens with triangular and square unit cells, manufactured using affordable Fused Deposition Modelling (FDM) with polyethylene terephthalate glycol (PETG), are tested at different lattice refinements while maintaining constant overall dimensions and solid volume fraction. The experiments reveal clear size-dependent behaviour in terms of stiffness, strength, and failure modes. To model these effects, three numerical strategies are employed: Direct Numerical Simulations (DNS), and multi-scale approaches based on first- and second-order computational homogenisation (FE2).DNS provides accurate predictions but is computationally expensive for fine lattices. Second-order FE2 captures size effects more efficiently, particularly when micro-scale periodic boundary conditions are applied, although it may overestimate responses for coarser lattices. This work critically assesses the accuracy and applicability of each modelling approach, providing valuable insight into the design and simulation of architected structures where scale-dependent behaviour is significant.

Abstract Image

尺寸效应的3d打印聚合物晶格下三点弯曲:制造,测试和建模
体系结构晶格结构经常表现出明显的尺寸效应,挑战传统的建模策略。本文提出了三维打印点阵梁在三点弯曲下尺寸效应的实验和数值研究。使用经济实惠的聚对苯二甲酸乙二醇酯(PETG)熔融沉积模型(FDM)制造的三角形和方形单元格样品,在不同的晶格精细化下进行测试,同时保持恒定的总体尺寸和固体体积分数。实验揭示了在刚度、强度和破坏模式方面的明确的尺寸依赖行为。为了模拟这些影响,采用了三种数值策略:直接数值模拟(DNS)和基于一阶和二阶计算均匀化(FE2)的多尺度方法。DNS提供了准确的预测,但对于精细的格来说,计算成本很高。二阶FE2更有效地捕获尺寸效应,特别是当应用微尺度周期性边界条件时,尽管它可能高估较粗晶格的响应。这项工作批判性地评估了每种建模方法的准确性和适用性,为建筑结构的设计和模拟提供了有价值的见解,其中规模依赖行为是重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.00
自引率
7.30%
发文量
275
审稿时长
48 days
期刊介绍: The European Journal of Mechanics endash; A/Solids continues to publish articles in English in all areas of Solid Mechanics from the physical and mathematical basis to materials engineering, technological applications and methods of modern computational mechanics, both pure and applied research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信