Radiomic features of infrapatellar fat pad are associated with knee symptoms and radiographic post-traumatic osteoarthritis at 10+ years after anterior cruciate ligament reconstruction

Sameed Khan , Richard Lartey , Nancy Obuchowski , Sibaji Gaj , Jeehun Kim , Mei Li , Brendan Eck , Faysal Altahawi , Morgan H. Jones , Laura Huston , Kevin Harkins , Michael Knopp , Christopher Kaeding , Carl Winalski , Kurt Spindler , Xiaojuan Li
{"title":"Radiomic features of infrapatellar fat pad are associated with knee symptoms and radiographic post-traumatic osteoarthritis at 10+ years after anterior cruciate ligament reconstruction","authors":"Sameed Khan ,&nbsp;Richard Lartey ,&nbsp;Nancy Obuchowski ,&nbsp;Sibaji Gaj ,&nbsp;Jeehun Kim ,&nbsp;Mei Li ,&nbsp;Brendan Eck ,&nbsp;Faysal Altahawi ,&nbsp;Morgan H. Jones ,&nbsp;Laura Huston ,&nbsp;Kevin Harkins ,&nbsp;Michael Knopp ,&nbsp;Christopher Kaeding ,&nbsp;Carl Winalski ,&nbsp;Kurt Spindler ,&nbsp;Xiaojuan Li","doi":"10.1016/j.ostima.2025.100263","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>The infrapatellar fat pad (IPFP) has been identified as a potential agent in joint degeneration leading to post-traumatic osteoarthritis (PTOA) in patients suffering from anterior cruciate ligament (ACL) injury. We leveraged machine learning and radiomics methods on knee MRI taken at ten-year follow-up post-ACL reconstruction to associate IPFP with knee symptoms and radiographic PTOA.</div></div><div><h3>Design</h3><div>In this cross-sectional study, the multi-site NIH-funded MOON nested Onsite cohort was followed up at ten years to obtain 3D MRI radiomics and patient-reported outcome measures (PROM). We identified the features with two radiomics-based classifiers that can detect, respectively, knee symptoms based on PROM data or radiographic PTOA based on Kellgren-Lawrence grade.</div></div><div><h3>Results</h3><div>We identified 29 radiomics features describing IPFP texture heterogeneity, volume, and signal intensity. For knee symptom detection, models constructed from radiomics achieved an AUROC of 0.76 [95 % CI, 0.65, 0.87], and 0.74 on cross-validation and the test set, respectively. For radiographic PTOA detection, models combining radiomics with clinical features achieved an AUROC of 0.82 [95 % CI, 0.74, 0.92] and 0.79 on cross-validation and the test set, respectively. Increased IPFP texture heterogeneity, larger volume, and increased signal intensity were linked to higher likelihood of knee symptoms and radiographic PTOA.</div></div><div><h3>Conclusion</h3><div>Radiomics features describing IPFP intensity, morphology, and texture achieve fair to moderate performance in discriminating PTOA-positive from PTOA-negative patients, defined either symptomatically or radiographically. These features describe the relationship between the IPFP and PTOA and are candidates for prognostic models or diagnostic scores that would link knee imaging to patient symptoms.</div></div>","PeriodicalId":74378,"journal":{"name":"Osteoarthritis imaging","volume":"5 2","pages":"Article 100263"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Osteoarthritis imaging","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772654125000030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

The infrapatellar fat pad (IPFP) has been identified as a potential agent in joint degeneration leading to post-traumatic osteoarthritis (PTOA) in patients suffering from anterior cruciate ligament (ACL) injury. We leveraged machine learning and radiomics methods on knee MRI taken at ten-year follow-up post-ACL reconstruction to associate IPFP with knee symptoms and radiographic PTOA.

Design

In this cross-sectional study, the multi-site NIH-funded MOON nested Onsite cohort was followed up at ten years to obtain 3D MRI radiomics and patient-reported outcome measures (PROM). We identified the features with two radiomics-based classifiers that can detect, respectively, knee symptoms based on PROM data or radiographic PTOA based on Kellgren-Lawrence grade.

Results

We identified 29 radiomics features describing IPFP texture heterogeneity, volume, and signal intensity. For knee symptom detection, models constructed from radiomics achieved an AUROC of 0.76 [95 % CI, 0.65, 0.87], and 0.74 on cross-validation and the test set, respectively. For radiographic PTOA detection, models combining radiomics with clinical features achieved an AUROC of 0.82 [95 % CI, 0.74, 0.92] and 0.79 on cross-validation and the test set, respectively. Increased IPFP texture heterogeneity, larger volume, and increased signal intensity were linked to higher likelihood of knee symptoms and radiographic PTOA.

Conclusion

Radiomics features describing IPFP intensity, morphology, and texture achieve fair to moderate performance in discriminating PTOA-positive from PTOA-negative patients, defined either symptomatically or radiographically. These features describe the relationship between the IPFP and PTOA and are candidates for prognostic models or diagnostic scores that would link knee imaging to patient symptoms.
髌下脂肪垫的放射学特征与前交叉韧带重建后10年以上创伤后骨关节炎的膝关节症状和影像学相关
目的髌下脂肪垫(IPFP)被认为是导致前交叉韧带(ACL)损伤患者发生外伤性骨关节炎(PTOA)的潜在因素。我们利用机器学习和放射组学方法对前交叉韧带重建后随访10年的膝关节MRI进行分析,将IPFP与膝关节症状和x线摄影上的PTOA联系起来。在这项横断面研究中,美国国立卫生研究院资助的多地点MOON嵌套现场队列每10年随访一次,以获得3D MRI放射组学和患者报告的结果测量(PROM)。我们用两种基于放射组学的分类器来识别特征,这两种分类器分别可以检测膝关节症状,基于PROM数据或基于kelgren - lawrence分级的x线摄影pta。结果我们确定了29个描述IPFP纹理异质性、体积和信号强度的放射组学特征。对于膝关节症状检测,放射组学构建的模型在交叉验证和测试集上的AUROC分别为0.76[95 % CI, 0.65, 0.87]和0.74。对于放射学pta检测,结合放射组学和临床特征的模型在交叉验证和测试集上的AUROC分别为0.82[95 % CI, 0.74, 0.92]和0.79。IPFP质构不均匀性增加、体积增大和信号强度增加与膝关节症状和x线上睑下垂的可能性增加有关。结论放射组学特征描述了IPFP强度、形态和质地,在区分pta阳性和pta阴性患者方面达到了一般到中等的效果,无论是从症状上还是从影像学上定义。这些特征描述了IPFP和PTOA之间的关系,是将膝关节成像与患者症状联系起来的预后模型或诊断评分的候选对象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Osteoarthritis imaging
Osteoarthritis imaging Radiology and Imaging
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信