Ying Wang , Ruosi Zhang , Mingdong Yao , Wenhai Xiao , Ying Wang , Ying-Jin Yuan
{"title":"Transcriptomic studies on the product stress response revealed that YCF1 is a beneficial factor for progesterone production in Yarrowia lipolytica","authors":"Ying Wang , Ruosi Zhang , Mingdong Yao , Wenhai Xiao , Ying Wang , Ying-Jin Yuan","doi":"10.1016/j.synbio.2025.04.008","DOIUrl":null,"url":null,"abstract":"<div><div>Progesterone is a widely used therapeutic hormone and a common precursor for the synthesis of pharmaceutical steroids in both mammals and plants. It has been successfully produced in heterologous microorganisms, but the market demand has not been met. The low progesterone yield, possibly due to product stress, may put pressure on the growth of strains and limit product synthesis efficiency. In this study, key pathways and genes that cause changes in amino acid and lipid metabolism and protein transport were identified through omics analysis. The expression of transporters leads to increased progesterone production and alleviated growth inhibition. Two related genes (gene IDs: 2912325 and 2908366) encoding the transporters glpF and SNQ2 improved production by 29.2 % and 51.7 %, respectively. Isoenzymes of native and exogenous transporters were screened and overexpressed. YCF1 from <em>Saccharomyces cerevisiae</em> exhibited the greatest benefit, increasing progesterone synthesis by 69.6 %. Our findings help reveal the impact of product stress on cellular metabolism and processes, providing research directions and literature support for the synthesis of other products.</div></div>","PeriodicalId":22148,"journal":{"name":"Synthetic and Systems Biotechnology","volume":"10 4","pages":"Pages 1087-1097"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic and Systems Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405805X25000559","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Progesterone is a widely used therapeutic hormone and a common precursor for the synthesis of pharmaceutical steroids in both mammals and plants. It has been successfully produced in heterologous microorganisms, but the market demand has not been met. The low progesterone yield, possibly due to product stress, may put pressure on the growth of strains and limit product synthesis efficiency. In this study, key pathways and genes that cause changes in amino acid and lipid metabolism and protein transport were identified through omics analysis. The expression of transporters leads to increased progesterone production and alleviated growth inhibition. Two related genes (gene IDs: 2912325 and 2908366) encoding the transporters glpF and SNQ2 improved production by 29.2 % and 51.7 %, respectively. Isoenzymes of native and exogenous transporters were screened and overexpressed. YCF1 from Saccharomyces cerevisiae exhibited the greatest benefit, increasing progesterone synthesis by 69.6 %. Our findings help reveal the impact of product stress on cellular metabolism and processes, providing research directions and literature support for the synthesis of other products.
期刊介绍:
Synthetic and Systems Biotechnology aims to promote the communication of original research in synthetic and systems biology, with strong emphasis on applications towards biotechnology. This journal is a quarterly peer-reviewed journal led by Editor-in-Chief Lixin Zhang. The journal publishes high-quality research; focusing on integrative approaches to enable the understanding and design of biological systems, and research to develop the application of systems and synthetic biology to natural systems. This journal will publish Articles, Short notes, Methods, Mini Reviews, Commentary and Conference reviews.