MoSi2 induced core-β/shell-Laves structure to achieve enhanced oxidation resistance of CoNiCrAlY alloys fabricated by oscillating laser-directed energy deposition

IF 7.4 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yunzhen Xu , Pan Ren , Lei Qin , Cheng Deng , Delong Zeng , Shengfeng Zhou
{"title":"MoSi2 induced core-β/shell-Laves structure to achieve enhanced oxidation resistance of CoNiCrAlY alloys fabricated by oscillating laser-directed energy deposition","authors":"Yunzhen Xu ,&nbsp;Pan Ren ,&nbsp;Lei Qin ,&nbsp;Cheng Deng ,&nbsp;Delong Zeng ,&nbsp;Shengfeng Zhou","doi":"10.1016/j.corsci.2025.113108","DOIUrl":null,"url":null,"abstract":"<div><div>To improve the oxidation resistance of CoNiCrAlY alloys, varying contents of MoSi<sub>2</sub> were introduced into the alloys fabricated via oscillating laser-directed energy deposition (OL-DED). The microstructural evolution and isothermal oxidation behavior of the CoNiCrAlY-<em>x</em>MoSi<sub>2</sub> alloys (<em>x</em> = 0, 5, 7, 10, and 12 wt.%) were systematically investigated. Results show that greater MoSi<sub>2</sub> additions facilitate β phase formation and lower the Al threshold required to develop a continuous Al<sub>2</sub>O<sub>3</sub> scale. This leads to a transition in the oxide scale from a double-layer structure (Co(Ni)Cr<sub>2</sub>O<sub>4</sub> + Al<sub>2</sub>O<sub>3</sub>) to a single-layer Al<sub>2</sub>O<sub>3</sub>. Notably, when the MoSi<sub>2</sub> content exceeds 5 wt.%, Laves phase precipitates form around the β phase, creating a unique core-β/shell-Laves structure. This structure effectively suppresses grain boundary diffusion of Al atoms, promoting lattice diffusion and facilitating the formation of a uniform and dense Al<sub>2</sub>O<sub>3</sub> scale. The optimal MoSi<sub>2</sub> addition of 10 wt.% results in a weight gain of only 0.36 mg/cm² after oxidation at 1000 °C for 500 h, representing a 62.1 % reduction compared to the undoped CoNiCrAlY alloy. These findings demonstrate that the OL-DED-fabricated CoNiCrAlY-10MoSi<sub>2</sub> alloy exhibits superior oxidation resistance, outperforming other MCrAlY alloys at 1000 °C.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"255 ","pages":"Article 113108"},"PeriodicalIF":7.4000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010938X25004354","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To improve the oxidation resistance of CoNiCrAlY alloys, varying contents of MoSi2 were introduced into the alloys fabricated via oscillating laser-directed energy deposition (OL-DED). The microstructural evolution and isothermal oxidation behavior of the CoNiCrAlY-xMoSi2 alloys (x = 0, 5, 7, 10, and 12 wt.%) were systematically investigated. Results show that greater MoSi2 additions facilitate β phase formation and lower the Al threshold required to develop a continuous Al2O3 scale. This leads to a transition in the oxide scale from a double-layer structure (Co(Ni)Cr2O4 + Al2O3) to a single-layer Al2O3. Notably, when the MoSi2 content exceeds 5 wt.%, Laves phase precipitates form around the β phase, creating a unique core-β/shell-Laves structure. This structure effectively suppresses grain boundary diffusion of Al atoms, promoting lattice diffusion and facilitating the formation of a uniform and dense Al2O3 scale. The optimal MoSi2 addition of 10 wt.% results in a weight gain of only 0.36 mg/cm² after oxidation at 1000 °C for 500 h, representing a 62.1 % reduction compared to the undoped CoNiCrAlY alloy. These findings demonstrate that the OL-DED-fabricated CoNiCrAlY-10MoSi2 alloy exhibits superior oxidation resistance, outperforming other MCrAlY alloys at 1000 °C.
MoSi2诱导核心-β/壳- laves结构,提高了振荡激光定向能沉积CoNiCrAlY合金的抗氧化性能
为了提高CoNiCrAlY合金的抗氧化性能,在振荡激光定向能沉积(OL-DED)制备的合金中加入了不同含量的MoSi2。系统地研究了CoNiCrAlY-xMoSi2合金(x = 0,5,7,10和12 wt.%)的显微组织演变和等温氧化行为。结果表明,添加更多的MoSi2有利于β相的形成,并降低了形成连续Al2O3尺度所需的Al阈值。这导致氧化层从双层结构(Co(Ni)Cr2O4 + Al2O3)转变为单层Al2O3。值得注意的是,当MoSi2含量超过5 wt。%, Laves相在β相周围析出,形成独特的核-β/壳-Laves结构。这种结构有效地抑制了Al原子的晶界扩散,促进了晶格扩散,有利于形成均匀致密的Al2O3尺度。MoSi2的最佳添加量为10 wt。在1000°C氧化500 h后,重量仅增加0.36 mg/cm²,与未掺杂的CoNiCrAlY合金相比,重量减少了62.1 %。这些结果表明,ol - d制备的conicaly - 10mosi2合金具有优异的抗氧化性能,在1000°C时优于其他MCrAlY合金。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Corrosion Science
Corrosion Science 工程技术-材料科学:综合
CiteScore
13.60
自引率
18.10%
发文量
763
审稿时长
46 days
期刊介绍: Corrosion occurrence and its practical control encompass a vast array of scientific knowledge. Corrosion Science endeavors to serve as the conduit for the exchange of ideas, developments, and research across all facets of this field, encompassing both metallic and non-metallic corrosion. The scope of this international journal is broad and inclusive. Published papers span from highly theoretical inquiries to essentially practical applications, covering diverse areas such as high-temperature oxidation, passivity, anodic oxidation, biochemical corrosion, stress corrosion cracking, and corrosion control mechanisms and methodologies. This journal publishes original papers and critical reviews across the spectrum of pure and applied corrosion, material degradation, and surface science and engineering. It serves as a crucial link connecting metallurgists, materials scientists, and researchers investigating corrosion and degradation phenomena. Join us in advancing knowledge and understanding in the vital field of corrosion science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信