{"title":"Electrospun fibers/nanofibers loaded with phase change materials: Characterization, applications and challenges","authors":"Moloud Nourani , Seid Mahdi Jafari","doi":"10.1016/j.polymertesting.2025.108879","DOIUrl":null,"url":null,"abstract":"<div><div>Thermal energy storage (TES) has emerged as a significant area of interest for various applications. The concept of latent heat storage enables the storage of substantial energy amounts during phase changes under nearly isothermal conditions, using phase change materials (PCMs). PCM-based TES systems encounter challenges like leakage, driving the development of electrospun phase change fibers (EPCFs) via the electrospinning process to improve PCM containment. Achieving successful fabrication and optimal performance of EPCFs necessitates a thorough investigation into their morphology, surface characteristics, crystallinity, stability, mechanical properties, thermal behavior, and TES capacity. Techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) are employed for detailed surface characterization of EPCFs. Besides surface properties, the thermal characteristics of EPCFs, including thermal stability, cycle durability, and TES efficiency, significantly impact their practical utility in various applications. Experimental methods like thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) are utilized to analyze their thermal properties. EPCFs have found diverse applications in textiles, thermos-responsive sensors, biomedical systems, and more, showcasing their versatility. Nonetheless, challenges persist in customizing EPCFs for specific applications, addressing PCM leakage, and ensuring optimal performance. This review article extensively explores the characterization methods, applications, and challenges associated with EPCFs in TES systems, offering insights into future research directions and strategies for overcoming existing challenges.</div></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"150 ","pages":"Article 108879"},"PeriodicalIF":6.0000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Testing","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014294182500193X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
Thermal energy storage (TES) has emerged as a significant area of interest for various applications. The concept of latent heat storage enables the storage of substantial energy amounts during phase changes under nearly isothermal conditions, using phase change materials (PCMs). PCM-based TES systems encounter challenges like leakage, driving the development of electrospun phase change fibers (EPCFs) via the electrospinning process to improve PCM containment. Achieving successful fabrication and optimal performance of EPCFs necessitates a thorough investigation into their morphology, surface characteristics, crystallinity, stability, mechanical properties, thermal behavior, and TES capacity. Techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) are employed for detailed surface characterization of EPCFs. Besides surface properties, the thermal characteristics of EPCFs, including thermal stability, cycle durability, and TES efficiency, significantly impact their practical utility in various applications. Experimental methods like thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) are utilized to analyze their thermal properties. EPCFs have found diverse applications in textiles, thermos-responsive sensors, biomedical systems, and more, showcasing their versatility. Nonetheless, challenges persist in customizing EPCFs for specific applications, addressing PCM leakage, and ensuring optimal performance. This review article extensively explores the characterization methods, applications, and challenges associated with EPCFs in TES systems, offering insights into future research directions and strategies for overcoming existing challenges.
期刊介绍:
Polymer Testing focuses on the testing, analysis and characterization of polymer materials, including both synthetic and natural or biobased polymers. Novel testing methods and the testing of novel polymeric materials in bulk, solution and dispersion is covered. In addition, we welcome the submission of the testing of polymeric materials for a wide range of applications and industrial products as well as nanoscale characterization.
The scope includes but is not limited to the following main topics:
Novel testing methods and Chemical analysis
• mechanical, thermal, electrical, chemical, imaging, spectroscopy, scattering and rheology
Physical properties and behaviour of novel polymer systems
• nanoscale properties, morphology, transport properties
Degradation and recycling of polymeric materials when combined with novel testing or characterization methods
• degradation, biodegradation, ageing and fire retardancy
Modelling and Simulation work will be only considered when it is linked to new or previously published experimental results.