Structural, optical, and photoelectrical properties of TiPcCl2/n-Si heterojunctions for optoelectronic applications

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
F.F. Alharbi , A.A.A. Darwish , Norah A.M. Alsaif , Badriah Albarzan , A.M. Hassanien
{"title":"Structural, optical, and photoelectrical properties of TiPcCl2/n-Si heterojunctions for optoelectronic applications","authors":"F.F. Alharbi ,&nbsp;A.A.A. Darwish ,&nbsp;Norah A.M. Alsaif ,&nbsp;Badriah Albarzan ,&nbsp;A.M. Hassanien","doi":"10.1016/j.physb.2025.417491","DOIUrl":null,"url":null,"abstract":"<div><div>This study comprehensively investigated the structural, optical, and photoelectrical properties of titanium-phthalocyanine chloride (TiPcCl<sub>2</sub>)/n-Si heterojunctions (HJ), focusing on their potential application in solar cells and renewable energy technologies. The structural analysis confirmed the successful deposition of TiPcCl<sub>2</sub> films exhibiting high crystalline and uniform morphology with an average grain size of approximately 60 nm. Optical characterization revealed a strong absorption in the visible region, with a bandgap of 1.45 eV, making TiPcCl<sub>2</sub> suitable for light-harvesting applications. The photoelectrical measurements under illumination demonstrated a clear photovoltaic response, with the HJ achieving a short-circuit current density (9.43 × 10<sup>−9</sup> A/cm<sup>2</sup>) and open-circuit voltage (0.1 V) indicative of efficient carrier separation and transport. The results suggest that TiPcCl<sub>2</sub>/n-Si HJ holds promise for photovoltaic applications, particularly in hybrid solar cells that leverage the advantages of organic/inorganic combinations. The study contributes valuable insights into the design and optimization of such HJs, paving the way for their use in sustainable energy solutions.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"714 ","pages":"Article 417491"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625006088","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

This study comprehensively investigated the structural, optical, and photoelectrical properties of titanium-phthalocyanine chloride (TiPcCl2)/n-Si heterojunctions (HJ), focusing on their potential application in solar cells and renewable energy technologies. The structural analysis confirmed the successful deposition of TiPcCl2 films exhibiting high crystalline and uniform morphology with an average grain size of approximately 60 nm. Optical characterization revealed a strong absorption in the visible region, with a bandgap of 1.45 eV, making TiPcCl2 suitable for light-harvesting applications. The photoelectrical measurements under illumination demonstrated a clear photovoltaic response, with the HJ achieving a short-circuit current density (9.43 × 10−9 A/cm2) and open-circuit voltage (0.1 V) indicative of efficient carrier separation and transport. The results suggest that TiPcCl2/n-Si HJ holds promise for photovoltaic applications, particularly in hybrid solar cells that leverage the advantages of organic/inorganic combinations. The study contributes valuable insights into the design and optimization of such HJs, paving the way for their use in sustainable energy solutions.
光电应用中TiPcCl2/n-Si异质结的结构、光学和光电性质
本研究全面研究了钛-酞菁氯(TiPcCl2)/n-Si异质结(HJ)的结构、光学和光电性能,重点研究了其在太阳能电池和可再生能源技术中的潜在应用。结构分析证实了TiPcCl2薄膜的成功沉积,具有高结晶性和均匀的形貌,平均晶粒尺寸约为60 nm。光学特性表明,TiPcCl2在可见光区具有很强的吸收,带隙为1.45 eV,适合于光捕获应用。光照下的光电测量显示出明显的光伏响应,HJ实现了短路电流密度(9.43 × 10−9 a /cm2)和开路电压(0.1 V),表明有效的载流子分离和传输。结果表明,TiPcCl2/n-Si HJ具有光伏应用前景,特别是在利用有机/无机组合优势的混合太阳能电池中。该研究为此类高温热源的设计和优化提供了有价值的见解,为其在可持续能源解决方案中的应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信