Ke Wu , Jian Yang , Tiejun Zhang , Jing Zuo , Heng Lin , Juan Wang , Anyun Zhang , Changwei Lei , Hongning Wang
{"title":"Emergence and traceability of Salmonella enterica serotype Mbandaka harboring blaOXA-10 from chickens in China","authors":"Ke Wu , Jian Yang , Tiejun Zhang , Jing Zuo , Heng Lin , Juan Wang , Anyun Zhang , Changwei Lei , Hongning Wang","doi":"10.1016/j.vetmic.2025.110593","DOIUrl":null,"url":null,"abstract":"<div><div><em>Salmonella enterica</em> serotype Mbandaka (<em>S.</em> Mbandaka), a multi-host adapted non-typhoidal <em>Salmonella</em>, has emerged as a significant public health concern in recent years. In this study, we isolated <em>S.</em> Mbandaka strains carrying a multidrug-resistant IncHI2A/IncHI2 plasmid from deceased chickens in China and performed whole-genome sequencing and comparative genomic analyses to investigate their global dissemination and evolutionary adaptation. The multidrug-resistant IncHI2A/IncHI2 plasmid in isolate YK35 harbored multiple antibiotic resistance genes (ARGs) including <em>bla</em><sub>OXA-10</sub>, which was firstly observed in <em>S.</em> Mbandaka in China. It exhibited high sequence identity with IncHI2A/IncHI2 plasmids identified in other bacterial species, including <em>S.</em> Typhimurium, <em>Klebsiella aerogenes</em>, and <em>E. coli</em>, which suggested the cross-species dissemination of IncHI2A/IncHI2 plasmids and ARGs. Global genomic epidemiology classified <em>S.</em> Mbandaka strains into seven distinct clades, with the majority originating from the USA and the UK. The pan-genomic analysis indicated an open pan-genome structure, with continuous expansion of accessory genes, particularly those associated with replication, recombination, repair, and defense mechanisms, underscoring the evolutionary adaptation of <em>S.</em> Mbandaka to external environments. Evolutionary analysis further traced the international transmission routes of <em>S.</em> Mbandaka, revealing potential cross-regional spread, particularly from the USA and the UK to other countries, including China. The findings emphasize the global spread and evolutionary adaptation of <em>S.</em> Mbandaka, likely driven by international trade and horizontal gene transfer, including the acquisition of ARGs, which have contributed to its increasing public health risks. This study underscores the urgent need for enhanced surveillance and control measures to mitigate the spread of <em>S.</em> Mbandaka and its antibiotic resistance, particularly in the context of global food supply chains and international trade.</div></div>","PeriodicalId":23551,"journal":{"name":"Veterinary microbiology","volume":"307 ","pages":"Article 110593"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378113525002287","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Salmonella enterica serotype Mbandaka (S. Mbandaka), a multi-host adapted non-typhoidal Salmonella, has emerged as a significant public health concern in recent years. In this study, we isolated S. Mbandaka strains carrying a multidrug-resistant IncHI2A/IncHI2 plasmid from deceased chickens in China and performed whole-genome sequencing and comparative genomic analyses to investigate their global dissemination and evolutionary adaptation. The multidrug-resistant IncHI2A/IncHI2 plasmid in isolate YK35 harbored multiple antibiotic resistance genes (ARGs) including blaOXA-10, which was firstly observed in S. Mbandaka in China. It exhibited high sequence identity with IncHI2A/IncHI2 plasmids identified in other bacterial species, including S. Typhimurium, Klebsiella aerogenes, and E. coli, which suggested the cross-species dissemination of IncHI2A/IncHI2 plasmids and ARGs. Global genomic epidemiology classified S. Mbandaka strains into seven distinct clades, with the majority originating from the USA and the UK. The pan-genomic analysis indicated an open pan-genome structure, with continuous expansion of accessory genes, particularly those associated with replication, recombination, repair, and defense mechanisms, underscoring the evolutionary adaptation of S. Mbandaka to external environments. Evolutionary analysis further traced the international transmission routes of S. Mbandaka, revealing potential cross-regional spread, particularly from the USA and the UK to other countries, including China. The findings emphasize the global spread and evolutionary adaptation of S. Mbandaka, likely driven by international trade and horizontal gene transfer, including the acquisition of ARGs, which have contributed to its increasing public health risks. This study underscores the urgent need for enhanced surveillance and control measures to mitigate the spread of S. Mbandaka and its antibiotic resistance, particularly in the context of global food supply chains and international trade.
期刊介绍:
Veterinary Microbiology is concerned with microbial (bacterial, fungal, viral) diseases of domesticated vertebrate animals (livestock, companion animals, fur-bearing animals, game, poultry, fish) that supply food, other useful products or companionship. In addition, Microbial diseases of wild animals living in captivity, or as members of the feral fauna will also be considered if the infections are of interest because of their interrelation with humans (zoonoses) and/or domestic animals. Studies of antimicrobial resistance are also included, provided that the results represent a substantial advance in knowledge. Authors are strongly encouraged to read - prior to submission - the Editorials (''Scope or cope'' and ''Scope or cope II'') published previously in the journal. The Editors reserve the right to suggest submission to another journal for those papers which they feel would be more appropriate for consideration by that journal.
Original research papers of high quality and novelty on aspects of control, host response, molecular biology, pathogenesis, prevention, and treatment of microbial diseases of animals are published. Papers dealing primarily with immunology, epidemiology, molecular biology and antiviral or microbial agents will only be considered if they demonstrate a clear impact on a disease. Papers focusing solely on diagnostic techniques (such as another PCR protocol or ELISA) will not be published - focus should be on a microorganism and not on a particular technique. Papers only reporting microbial sequences, transcriptomics data, or proteomics data will not be considered unless the results represent a substantial advance in knowledge.
Drug trial papers will be considered if they have general application or significance. Papers on the identification of microorganisms will also be considered, but detailed taxonomic studies do not fall within the scope of the journal. Case reports will not be published, unless they have general application or contain novel aspects. Papers of geographically limited interest, which repeat what had been established elsewhere will not be considered. The readership of the journal is global.