Deep convolutional generative adversarial network accelerated optimization algorithm for parameter optimization of permanent magnet synchronous generator controllers

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Linfei Yin, Haomiao Li, Yongzi Ye, Fang Gao
{"title":"Deep convolutional generative adversarial network accelerated optimization algorithm for parameter optimization of permanent magnet synchronous generator controllers","authors":"Linfei Yin,&nbsp;Haomiao Li,&nbsp;Yongzi Ye,&nbsp;Fang Gao","doi":"10.1016/j.asoc.2025.113458","DOIUrl":null,"url":null,"abstract":"<div><div>In permanent magnet synchronous generators (PMSG), optimized rotor-side controller (RSC) parameters improve the power coefficient. Aiming at the traditional intelligent optimization algorithms since the long optimization time and insufficient global search capability, this work proposes adaptive differential evolution variants with linear population size reduction (L-SHADE) for constrained optimization with Levy flights (COLSHADE) accelerated by using deep convolutional generative adversarial network (DCGAN). The DCGAN-COLSHADE converts the parameters of the PMSG controllers into pictures and utilizes the DCGAN alternative algorithmic iterative process to speed up the COLSHADE iterative process and accomplish a broader and deeper global optimization problem. The PMSG simulation results utilizing the maximum power point tracking strategy verify the DCGAN-COLSHADE can obtain globally optimal solutions and higher system stability. The fitness function value of DCGAN-COLSHADE is 3.96 % smaller than the comparison algorithm; the average computation time is 79.28 % less than the particle swarm optimization (PSO), 80.35 % less than the moth flame optimization (MFO), 80.75 % less than the whale optimization algorithm (WOA), 80.52 % less than gray wolf optimization (GWO) and 77.96 % less than COLSHADE. In addition, the results of rapid control prototype (RCP) hardware experiments validate the feasibility and effectiveness of the algorithm.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"180 ","pages":"Article 113458"},"PeriodicalIF":7.2000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494625007690","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In permanent magnet synchronous generators (PMSG), optimized rotor-side controller (RSC) parameters improve the power coefficient. Aiming at the traditional intelligent optimization algorithms since the long optimization time and insufficient global search capability, this work proposes adaptive differential evolution variants with linear population size reduction (L-SHADE) for constrained optimization with Levy flights (COLSHADE) accelerated by using deep convolutional generative adversarial network (DCGAN). The DCGAN-COLSHADE converts the parameters of the PMSG controllers into pictures and utilizes the DCGAN alternative algorithmic iterative process to speed up the COLSHADE iterative process and accomplish a broader and deeper global optimization problem. The PMSG simulation results utilizing the maximum power point tracking strategy verify the DCGAN-COLSHADE can obtain globally optimal solutions and higher system stability. The fitness function value of DCGAN-COLSHADE is 3.96 % smaller than the comparison algorithm; the average computation time is 79.28 % less than the particle swarm optimization (PSO), 80.35 % less than the moth flame optimization (MFO), 80.75 % less than the whale optimization algorithm (WOA), 80.52 % less than gray wolf optimization (GWO) and 77.96 % less than COLSHADE. In addition, the results of rapid control prototype (RCP) hardware experiments validate the feasibility and effectiveness of the algorithm.
用于永磁同步发电机控制器参数优化的深度卷积生成对抗网络加速优化算法
在永磁同步发电机(PMSG)中,优化转子侧控制器(RSC)参数可以提高功率系数。针对传统智能优化算法优化时间长、全局搜索能力不足的问题,提出了采用深度卷积生成对抗网络(DCGAN)加速Levy飞行约束优化的线性种群缩减自适应差分进化变体(L-SHADE)。DCGAN-COLSHADE将PMSG控制器的参数转换为图像,并利用DCGAN替代算法迭代过程,加快COLSHADE迭代过程,完成更广泛、更深层次的全局优化问题。采用最大功率点跟踪策略的PMSG仿真结果验证了DCGAN-COLSHADE可以获得全局最优解和更高的系统稳定性。DCGAN-COLSHADE的适应度函数值比比较算法小3.96 %;平均计算时间比粒子群优化算法(PSO)少79.28 %,比蛾焰优化算法(MFO)少80.35 %,比鲸鱼优化算法(WOA)少80.75 %,比灰狼优化算法(GWO)少80.52 %,比COLSHADE算法少77.96 %。此外,快速控制原型(RCP)硬件实验结果验证了该算法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Soft Computing
Applied Soft Computing 工程技术-计算机:跨学科应用
CiteScore
15.80
自引率
6.90%
发文量
874
审稿时长
10.9 months
期刊介绍: Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities. Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信