ClipCap+ +: An efficient image captioning approach via image encoder optimization and LLM fine-tuning

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ruiqin Wang , Ye Wu , Zhenzhen Sheng
{"title":"ClipCap+ +: An efficient image captioning approach via image encoder optimization and LLM fine-tuning","authors":"Ruiqin Wang ,&nbsp;Ye Wu ,&nbsp;Zhenzhen Sheng","doi":"10.1016/j.asoc.2025.113469","DOIUrl":null,"url":null,"abstract":"<div><div>ClipCap (CLIP prefix for image captioning), a leading image captioning model, exhibits limitations in recognizing images within specific domains. This study presents ClipCap+ +, an enhanced version of ClipCap that integrates key-value pair and residual connection modules. The key-value pair module implements a few-shot learning strategy by incorporating domain-specific knowledge, thereby improving the model's capability to recognize specialized image categories. The residual connection module optimizes the weight distribution between the pre-trained model and the key-value pair module, enhancing the model's transfer learning performance. During the inference phase, the model processes an input image through a multi-stage pipeline: (1) the visual encoder extracts image features to generate a hard visual prompt, (2) the key-value pair module dynamically constructs a domain-specific soft prompt, and (3) these complementary prompts are jointly fed into the large language model to synthesize the final image description. Extensive experiments on in-domain, near-domain, and cross-domain tasks show ClipCap+ + surpasses state-of-the-art models in accuracy, training efficiency, and generalization.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"180 ","pages":"Article 113469"},"PeriodicalIF":7.2000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156849462500780X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

ClipCap (CLIP prefix for image captioning), a leading image captioning model, exhibits limitations in recognizing images within specific domains. This study presents ClipCap+ +, an enhanced version of ClipCap that integrates key-value pair and residual connection modules. The key-value pair module implements a few-shot learning strategy by incorporating domain-specific knowledge, thereby improving the model's capability to recognize specialized image categories. The residual connection module optimizes the weight distribution between the pre-trained model and the key-value pair module, enhancing the model's transfer learning performance. During the inference phase, the model processes an input image through a multi-stage pipeline: (1) the visual encoder extracts image features to generate a hard visual prompt, (2) the key-value pair module dynamically constructs a domain-specific soft prompt, and (3) these complementary prompts are jointly fed into the large language model to synthesize the final image description. Extensive experiments on in-domain, near-domain, and cross-domain tasks show ClipCap+ + surpasses state-of-the-art models in accuracy, training efficiency, and generalization.
ClipCap+ +:通过图像编码器优化和LLM微调的高效图像字幕方法
ClipCap(图像字幕的CLIP前缀)是一种领先的图像字幕模型,在识别特定域内的图像方面存在局限性。本研究提出了ClipCap+ +,ClipCap的增强版本,集成了键值对和剩余连接模块。键值对模块通过结合领域特定知识实现了几次学习策略,从而提高了模型识别特定图像类别的能力。残差连接模块优化了预训练模型与键值对模块之间的权值分配,提高了模型的迁移学习性能。在推理阶段,模型通过多阶段流水线对输入图像进行处理:(1)视觉编码器提取图像特征生成硬视觉提示,(2)键值对模块动态构建特定领域的软提示,(3)这些互补提示共同馈入大语言模型,合成最终的图像描述。在域内、近域和跨域任务上的大量实验表明,ClipCap+ +在准确性、训练效率和泛化方面超过了最先进的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Soft Computing
Applied Soft Computing 工程技术-计算机:跨学科应用
CiteScore
15.80
自引率
6.90%
发文量
874
审稿时长
10.9 months
期刊介绍: Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities. Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信