{"title":"Dimethyloxalylglycine regulates osteogenesis of dental pulp stem cells through PI3K/AKT signaling pathways","authors":"Qiannan Dong , Hengwei Zhang , Qian Zhang , Xiuzhi Fei , Jianping Ruan , Longlong He","doi":"10.1016/j.tice.2025.103012","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Dental pulp mesenchymal stem cells (DPSCs) are typically cultivated in vitro under normoxic conditions, which may adversely affect their biological functions during research and treatment. Dimethyloxalylglycine (DMOG) is a small-molecule drug that has demonstrated impressive therapeutic outcomes in conditions such as osteoporosis.</div></div><div><h3>Objective</h3><div>However, the influence of DMOG on the osteogenesis associated with DPSCs remains inadequately understood. We propose that DMOG may significantly impact the biological functions related to osteogenesis in DPSCs when exposed to normoxic conditions.</div></div><div><h3>Materials and methods</h3><div>DPSCs were obtained through tissue block enzyme digestion. Tube formation experiment was conducted, quantitative polymerase chain reaction (qPCR) was employed to assess the angiogenic activity of DPSCs. Additionally, alkaline phosphatase (ALP) activity tests, alizarin red staining (ARS), qPCR and western blotting (WB) assays were utilized to evaluate the osteogenic activity of DPSCs. The proposed mechanism was confirmed through repeated experiments.</div></div><div><h3>Results</h3><div>DMOG significantly influences the osteogenic functions of DPSCs under normoxic conditions. Our findings further confirm that DMOG stimulates the phosphatidylinositol 3-kinase (PI3K)/Protein kinase B (AKT) signaling pathway in DPSCs via phosphorylation. Inhibition of this pathway can partially impede the biological effects of DPSCs related to osteogenesis and angiogenesis.</div></div><div><h3>Conclusion</h3><div>We have addressed the gap in understanding the effect of DMOG on the osteogenesis of DPSCs. Unlike previous studies that examined the regulation of osteogenesis in stem cells by DMOG, our findings suggest that a lower dose of DMOG is sufficient to enhance the osteogenesis of DPSCs. This could represent a promising strategy for cellular therapy in bone regeneration.</div></div>","PeriodicalId":23201,"journal":{"name":"Tissue & cell","volume":"96 ","pages":"Article 103012"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue & cell","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040816625002927","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Dental pulp mesenchymal stem cells (DPSCs) are typically cultivated in vitro under normoxic conditions, which may adversely affect their biological functions during research and treatment. Dimethyloxalylglycine (DMOG) is a small-molecule drug that has demonstrated impressive therapeutic outcomes in conditions such as osteoporosis.
Objective
However, the influence of DMOG on the osteogenesis associated with DPSCs remains inadequately understood. We propose that DMOG may significantly impact the biological functions related to osteogenesis in DPSCs when exposed to normoxic conditions.
Materials and methods
DPSCs were obtained through tissue block enzyme digestion. Tube formation experiment was conducted, quantitative polymerase chain reaction (qPCR) was employed to assess the angiogenic activity of DPSCs. Additionally, alkaline phosphatase (ALP) activity tests, alizarin red staining (ARS), qPCR and western blotting (WB) assays were utilized to evaluate the osteogenic activity of DPSCs. The proposed mechanism was confirmed through repeated experiments.
Results
DMOG significantly influences the osteogenic functions of DPSCs under normoxic conditions. Our findings further confirm that DMOG stimulates the phosphatidylinositol 3-kinase (PI3K)/Protein kinase B (AKT) signaling pathway in DPSCs via phosphorylation. Inhibition of this pathway can partially impede the biological effects of DPSCs related to osteogenesis and angiogenesis.
Conclusion
We have addressed the gap in understanding the effect of DMOG on the osteogenesis of DPSCs. Unlike previous studies that examined the regulation of osteogenesis in stem cells by DMOG, our findings suggest that a lower dose of DMOG is sufficient to enhance the osteogenesis of DPSCs. This could represent a promising strategy for cellular therapy in bone regeneration.
期刊介绍:
Tissue and Cell is devoted to original research on the organization of cells, subcellular and extracellular components at all levels, including the grouping and interrelations of cells in tissues and organs. The journal encourages submission of ultrastructural studies that provide novel insights into structure, function and physiology of cells and tissues, in health and disease. Bioengineering and stem cells studies focused on the description of morphological and/or histological data are also welcomed.
Studies investigating the effect of compounds and/or substances on structure of cells and tissues are generally outside the scope of this journal. For consideration, studies should contain a clear rationale on the use of (a) given substance(s), have a compelling morphological and structural focus and present novel incremental findings from previous literature.