Very mild diffusion enhancement and singular sensitivity: Existence of bounded weak solutions in a two-dimensional chemotaxis-Navier–Stokes system

IF 2.4 2区 数学 Q1 MATHEMATICS
Tobias Black
{"title":"Very mild diffusion enhancement and singular sensitivity: Existence of bounded weak solutions in a two-dimensional chemotaxis-Navier–Stokes system","authors":"Tobias Black","doi":"10.1016/j.jde.2025.113555","DOIUrl":null,"url":null,"abstract":"<div><div>We consider an initial-boundary value problem for the chemotaxis-Navier–Stokes system<span><span><span><math><mrow><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mi>n</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mo>⋅</mo><mi>∇</mi><mi>n</mi><mspace></mspace></mtd><mtd><mo>=</mo><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>D</mi><mo>(</mo><mi>n</mi><mo>)</mo><mi>∇</mi><mi>n</mi><mo>−</mo><mi>n</mi><mi>S</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>c</mi><mo>)</mo><mo>⋅</mo><mi>∇</mi><mi>c</mi><mo>)</mo><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace></mtd><mtd><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo><mspace></mspace></mtd></mtr><mtr><mtd><msub><mrow><mi>c</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mo>⋅</mo><mi>∇</mi><mi>c</mi><mspace></mspace></mtd><mtd><mo>=</mo><mi>Δ</mi><mi>c</mi><mo>−</mo><mi>c</mi><mi>n</mi><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace></mtd><mtd><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo><mspace></mspace></mtd></mtr><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mo>(</mo><mi>u</mi><mo>⋅</mo><mi>∇</mi><mo>)</mo><mi>u</mi><mspace></mspace></mtd><mtd><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>∇</mi><mi>P</mi><mo>+</mo><mi>n</mi><mi>∇</mi><mi>Φ</mi><mo>,</mo><mspace></mspace><mi>∇</mi><mo>⋅</mo><mi>u</mi><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace></mtd><mtd><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo><mspace></mspace></mtd></mtr><mtr><mtd><mo>(</mo><mi>D</mi><mo>(</mo><mi>n</mi><mo>)</mo><mi>∇</mi><mi>n</mi><mo>−</mo><mi>n</mi><mspace></mspace></mtd><mtd><mi>S</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>c</mi><mo>)</mo><mo>⋅</mo><mi>∇</mi><mi>c</mi><mo>)</mo><mo>⋅</mo><mi>ν</mi><mo>=</mo><mi>∇</mi><mi>c</mi><mo>⋅</mo><mi>ν</mi><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mi>u</mi><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mrow><mo>∂</mo><mi>Ω</mi></mrow><mo>,</mo><mspace></mspace></mtd><mtd><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo><mspace></mspace></mtd></mtr><mtr><mtd><mi>n</mi><mo>(</mo><mo>⋅</mo><mo>,</mo><mn>0</mn><mo>)</mo><mo>=</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mspace></mspace><mi>c</mi><mo>(</mo><mo>⋅</mo><mo>,</mo><mn>0</mn><mo>)</mo><mo>=</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mspace></mspace><mi>u</mi><mo>(</mo><mo>⋅</mo><mo>,</mo><mn>0</mn><mo>)</mo><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace></mtd></mtr></mtable></mrow></mrow></math></span></span></span> in a smoothly bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. Assuming <span><math><mi>S</mi><mo>:</mo><mover><mrow><mi>Ω</mi></mrow><mo>‾</mo></mover><mo>×</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>×</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn><mo>×</mo><mn>2</mn></mrow></msup></math></span> to be sufficiently regular and such that with <span><math><mi>γ</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>6</mn></mrow></mfrac><mo>]</mo></math></span> and some non-decreasing <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>:</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>→</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>, we have<span><span><span><math><mrow><mo>|</mo><mi>S</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>c</mi><mo>)</mo><mo>|</mo><mo>≤</mo><mfrac><mrow><msub><mrow><mi>S</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>c</mi><mo>)</mo></mrow><mrow><msup><mrow><mi>c</mi></mrow><mrow><mi>γ</mi></mrow></msup></mrow></mfrac><mspace></mspace><mtext>for all </mtext><mo>(</mo><mi>x</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>c</mi><mo>)</mo><mo>∈</mo><mover><mrow><mi>Ω</mi></mrow><mo>‾</mo></mover><mo>×</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>×</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>,</mo></mrow></math></span></span></span> we show that if <span><math><mi>D</mi><mo>:</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>→</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> is suitably regular and positive throughout <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>, then for all <span><math><mi>M</mi><mo>&gt;</mo><mn>0</mn></math></span> one can find <span><math><mi>L</mi><mo>(</mo><mi>M</mi><mo>)</mo><mo>&gt;</mo><mn>0</mn></math></span> such that whenever<span><span><span><math><munder><mrow><mrow><mi>lim</mi></mrow><mspace></mspace><mrow><mi>inf</mi></mrow></mrow><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></munder><mspace></mspace><mi>D</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>&gt;</mo><mi>L</mi><mspace></mspace><mtext>and</mtext><mspace></mspace><munder><mrow><mrow><mi>lim</mi></mrow><mspace></mspace><mrow><mi>inf</mi></mrow></mrow><mrow><mi>n</mi><mo>↘</mo><mn>0</mn></mrow></munder><mspace></mspace><mfrac><mrow><mi>D</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mrow><mi>n</mi></mrow></mfrac><mo>&gt;</mo><mn>0</mn></math></span></span></span> are satisfied and the initial data <span><math><mo>(</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> are suitably regular and satisfy <span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></msub><mo>≤</mo><mi>M</mi></math></span> there is a global and bounded weak solution for the initial-boundary value problem above. Under the additional assumption of <span><math><mi>D</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>&gt;</mo><mn>0</mn></math></span> this solution is moreover a classical solution of the same problem.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"443 ","pages":"Article 113555"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005820","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider an initial-boundary value problem for the chemotaxis-Navier–Stokes system{nt+un=(D(n)nnS(x,n,c)c),xΩ,t>0,ct+uc=Δccn,xΩ,t>0,ut+(u)u=Δu+P+nΦ,u=0,xΩ,t>0,(D(n)nnS(x,n,c)c)ν=cν=0,u=0,xΩ,t>0,n(,0)=n0,c(,0)=c0,u(,0)=u0,xΩ, in a smoothly bounded domain ΩR2. Assuming S:Ω×[0,)×(0,)R2×2 to be sufficiently regular and such that with γ[0,56] and some non-decreasing S0:(0,)(0,), we have|S(x,n,c)|S0(c)cγfor all (x,n,c)Ω×[0,)×(0,), we show that if D:[0,)[0,) is suitably regular and positive throughout (0,), then for all M>0 one can find L(M)>0 such that wheneverliminfnD(n)>Landliminfn0D(n)n>0 are satisfied and the initial data (n0,c0,u0) are suitably regular and satisfy c0L(Ω)M there is a global and bounded weak solution for the initial-boundary value problem above. Under the additional assumption of D(0)>0 this solution is moreover a classical solution of the same problem.
非常温和的扩散增强和奇异灵敏度:二维趋化- navier - stokes系统有界弱解的存在性
我们考虑一个初边值问题chemotaxis-Navier-Stokes系统{nt + u⋅∇n =∇⋅(D n (n)∇−nS (x, n, c)⋅∇c), x∈Ω,t> 0, ct + u⋅∇c = cΔ−cn, x∈Ω,t> 0, ut + (u⋅∇)u =Δu +∇P + n∇Φ,∇⋅u = 0, x∈Ω,t> 0, (D n (n)∇−nS (x, n, c)⋅∇c)⋅νc =∇⋅ν= 0,u = 0, x∈∂Ω,t> 0, n(⋅0)= n0, c(⋅,0)= c0, u(⋅,0)=情况,x∈Ω,顺利有限域中Ω⊂R2。假设S:Ω(0,∞)x(0,∞)→R2×2充分正则,并且当γ∈[0,56]和一些非递减的S0:(0,∞)→(0,∞)时,我们得到|S(x,n,c)|≤S0(c)cγ对于所有(x,n,c)∈Ω (x,n,∞)x(0,∞),我们证明如果D:[0,∞)→[0,∞)在整个(0,∞)中是适当正则且正的,那么对于所有的M>;0,我们可以找到L(M)>0,使得当everliminfn→∞D(n)>; 0满足,并且初始数据(n0,c0,u0)是适当正则的并且满足‖c0‖L∞(Ω)≤M时,存在上述初边值问题的一个全局有界弱解。在附加假设D(0)>;0下,该解是同一问题的经典解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信