{"title":"Very mild diffusion enhancement and singular sensitivity: Existence of bounded weak solutions in a two-dimensional chemotaxis-Navier–Stokes system","authors":"Tobias Black","doi":"10.1016/j.jde.2025.113555","DOIUrl":null,"url":null,"abstract":"<div><div>We consider an initial-boundary value problem for the chemotaxis-Navier–Stokes system<span><span><span><math><mrow><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mi>n</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mo>⋅</mo><mi>∇</mi><mi>n</mi><mspace></mspace></mtd><mtd><mo>=</mo><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>D</mi><mo>(</mo><mi>n</mi><mo>)</mo><mi>∇</mi><mi>n</mi><mo>−</mo><mi>n</mi><mi>S</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>c</mi><mo>)</mo><mo>⋅</mo><mi>∇</mi><mi>c</mi><mo>)</mo><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace></mtd><mtd><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo><mspace></mspace></mtd></mtr><mtr><mtd><msub><mrow><mi>c</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mo>⋅</mo><mi>∇</mi><mi>c</mi><mspace></mspace></mtd><mtd><mo>=</mo><mi>Δ</mi><mi>c</mi><mo>−</mo><mi>c</mi><mi>n</mi><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace></mtd><mtd><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo><mspace></mspace></mtd></mtr><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mo>(</mo><mi>u</mi><mo>⋅</mo><mi>∇</mi><mo>)</mo><mi>u</mi><mspace></mspace></mtd><mtd><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>∇</mi><mi>P</mi><mo>+</mo><mi>n</mi><mi>∇</mi><mi>Φ</mi><mo>,</mo><mspace></mspace><mi>∇</mi><mo>⋅</mo><mi>u</mi><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace></mtd><mtd><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo><mspace></mspace></mtd></mtr><mtr><mtd><mo>(</mo><mi>D</mi><mo>(</mo><mi>n</mi><mo>)</mo><mi>∇</mi><mi>n</mi><mo>−</mo><mi>n</mi><mspace></mspace></mtd><mtd><mi>S</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>c</mi><mo>)</mo><mo>⋅</mo><mi>∇</mi><mi>c</mi><mo>)</mo><mo>⋅</mo><mi>ν</mi><mo>=</mo><mi>∇</mi><mi>c</mi><mo>⋅</mo><mi>ν</mi><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mi>u</mi><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mrow><mo>∂</mo><mi>Ω</mi></mrow><mo>,</mo><mspace></mspace></mtd><mtd><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo><mspace></mspace></mtd></mtr><mtr><mtd><mi>n</mi><mo>(</mo><mo>⋅</mo><mo>,</mo><mn>0</mn><mo>)</mo><mo>=</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mspace></mspace><mi>c</mi><mo>(</mo><mo>⋅</mo><mo>,</mo><mn>0</mn><mo>)</mo><mo>=</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mspace></mspace><mi>u</mi><mo>(</mo><mo>⋅</mo><mo>,</mo><mn>0</mn><mo>)</mo><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace></mtd></mtr></mtable></mrow></mrow></math></span></span></span> in a smoothly bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. Assuming <span><math><mi>S</mi><mo>:</mo><mover><mrow><mi>Ω</mi></mrow><mo>‾</mo></mover><mo>×</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>×</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn><mo>×</mo><mn>2</mn></mrow></msup></math></span> to be sufficiently regular and such that with <span><math><mi>γ</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>6</mn></mrow></mfrac><mo>]</mo></math></span> and some non-decreasing <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>:</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>→</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>, we have<span><span><span><math><mrow><mo>|</mo><mi>S</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>c</mi><mo>)</mo><mo>|</mo><mo>≤</mo><mfrac><mrow><msub><mrow><mi>S</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>c</mi><mo>)</mo></mrow><mrow><msup><mrow><mi>c</mi></mrow><mrow><mi>γ</mi></mrow></msup></mrow></mfrac><mspace></mspace><mtext>for all </mtext><mo>(</mo><mi>x</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>c</mi><mo>)</mo><mo>∈</mo><mover><mrow><mi>Ω</mi></mrow><mo>‾</mo></mover><mo>×</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>×</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>,</mo></mrow></math></span></span></span> we show that if <span><math><mi>D</mi><mo>:</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>→</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> is suitably regular and positive throughout <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>, then for all <span><math><mi>M</mi><mo>></mo><mn>0</mn></math></span> one can find <span><math><mi>L</mi><mo>(</mo><mi>M</mi><mo>)</mo><mo>></mo><mn>0</mn></math></span> such that whenever<span><span><span><math><munder><mrow><mrow><mi>lim</mi></mrow><mspace></mspace><mrow><mi>inf</mi></mrow></mrow><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></munder><mspace></mspace><mi>D</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>></mo><mi>L</mi><mspace></mspace><mtext>and</mtext><mspace></mspace><munder><mrow><mrow><mi>lim</mi></mrow><mspace></mspace><mrow><mi>inf</mi></mrow></mrow><mrow><mi>n</mi><mo>↘</mo><mn>0</mn></mrow></munder><mspace></mspace><mfrac><mrow><mi>D</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mrow><mi>n</mi></mrow></mfrac><mo>></mo><mn>0</mn></math></span></span></span> are satisfied and the initial data <span><math><mo>(</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> are suitably regular and satisfy <span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></msub><mo>≤</mo><mi>M</mi></math></span> there is a global and bounded weak solution for the initial-boundary value problem above. Under the additional assumption of <span><math><mi>D</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>></mo><mn>0</mn></math></span> this solution is moreover a classical solution of the same problem.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"443 ","pages":"Article 113555"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005820","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider an initial-boundary value problem for the chemotaxis-Navier–Stokes system in a smoothly bounded domain . Assuming to be sufficiently regular and such that with and some non-decreasing , we have we show that if is suitably regular and positive throughout , then for all one can find such that whenever are satisfied and the initial data are suitably regular and satisfy there is a global and bounded weak solution for the initial-boundary value problem above. Under the additional assumption of this solution is moreover a classical solution of the same problem.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics