The optimal decay and propagation of regularity for the inhomogeneous Landau equation in (Lx∞ˆ∩Lxrˆ)Lv2 space

IF 2.3 2区 数学 Q1 MATHEMATICS
Hao-Guang Li
{"title":"The optimal decay and propagation of regularity for the inhomogeneous Landau equation in (Lx∞ˆ∩Lxrˆ)Lv2 space","authors":"Hao-Guang Li","doi":"10.1016/j.jde.2025.113551","DOIUrl":null,"url":null,"abstract":"<div><div>We study the Cauchy problem for the inhomogeneous Landau equation with hard potentials and moderately soft potentials in <span><math><mo>(</mo><mover><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>x</mi></mrow><mrow><mo>∞</mo></mrow></msubsup></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>∩</mo><mover><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>x</mi></mrow><mrow><mi>r</mi></mrow></msubsup></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> space with <span><math><mn>1</mn><mo>≤</mo><mi>r</mi><mo>&lt;</mo><mn>3</mn></math></span>. In perturbation framework, we establish the global existence and optimal time decay rate of the solution with initial datum <span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><mo>(</mo><mover><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>x</mi></mrow><mrow><mo>∞</mo></mrow></msubsup></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>∩</mo><mover><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>x</mi></mrow><mrow><mi>r</mi></mrow></msubsup></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msubsup></mrow></msub><mo>+</mo><msub><mrow><mo>‖</mo><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><msub><mrow><mi>f</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><mover><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>x</mi></mrow><mrow><mi>r</mi></mrow></msubsup></mrow><mrow><mo>ˆ</mo></mrow></mover><msubsup><mrow><mi>L</mi></mrow><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msubsup></mrow></msub></math></span> smallness, where <span><math><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></math></span> is the Riesz potential, <span><math><mover><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>x</mi></mrow><mrow><mi>r</mi></mrow></msubsup></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span> is the Fourier-Hertz space equipped with the norm <span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><mover><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>x</mi></mrow><mrow><mi>r</mi></mrow></msubsup></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow></msub><mo>=</mo><msub><mrow><mo>‖</mo><mover><mrow><msub><mrow><mi>f</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>‖</mo></mrow><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>ξ</mi></mrow><mrow><mi>p</mi></mrow></msubsup></mrow></msub></math></span> with <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>r</mi></mrow></mfrac><mo>=</mo><mn>1</mn></math></span> and <span><math><mover><mrow><msub><mrow><mi>f</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>(</mo><mi>ξ</mi><mo>,</mo><mi>v</mi><mo>)</mo></math></span> is the Fourier transform in space variable. Moreover, we obtain the propagation of Gevrey and Gelfand-Shilov regularity in the space and velocity variables.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"442 ","pages":"Article 113551"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005789","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the Cauchy problem for the inhomogeneous Landau equation with hard potentials and moderately soft potentials in (LxˆLxrˆ)Lv2 space with 1r<3. In perturbation framework, we establish the global existence and optimal time decay rate of the solution with initial datum f0(LxˆLxrˆ)Lv2+(Δ)12f0LxrˆLv2 smallness, where (Δ)12 is the Riesz potential, Lxrˆ is the Fourier-Hertz space equipped with the norm f0Lxrˆ=f0ˆLξp with 1p+1r=1 and f0ˆ(ξ,v) is the Fourier transform in space variable. Moreover, we obtain the propagation of Gevrey and Gelfand-Shilov regularity in the space and velocity variables.
(Lx∞°∩Lxr°)Lv2空间中非齐次朗道方程正则性的最优衰减和传播
研究了1≤r<的(Lx∞ø∩Lxr ø)Lv2空间中具有硬势和中软势的非齐次朗道方程的Cauchy问题;在摄动框架下,我们建立了具有初始基准‖f0‖(Lx∞ ̄∩Lxr ̄)Lv2+‖(−Δ)−12f0‖Lxr ̄Lv2小度的解的全局存在性和最优时间衰减率,其中(−Δ)−12为Riesz势,Lxr ̄为范数‖f0‖Lxr ̄=‖f0 ̄‖Lξp,其中1p+1r=1, f0 ̄(ξ,v)为空间变量的傅里叶变换。此外,我们还得到了Gevrey和Gelfand-Shilov正则在空间和速度变量中的传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信