{"title":"The optimal decay and propagation of regularity for the inhomogeneous Landau equation in (Lx∞ˆ∩Lxrˆ)Lv2 space","authors":"Hao-Guang Li","doi":"10.1016/j.jde.2025.113551","DOIUrl":null,"url":null,"abstract":"<div><div>We study the Cauchy problem for the inhomogeneous Landau equation with hard potentials and moderately soft potentials in <span><math><mo>(</mo><mover><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>x</mi></mrow><mrow><mo>∞</mo></mrow></msubsup></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>∩</mo><mover><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>x</mi></mrow><mrow><mi>r</mi></mrow></msubsup></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> space with <span><math><mn>1</mn><mo>≤</mo><mi>r</mi><mo><</mo><mn>3</mn></math></span>. In perturbation framework, we establish the global existence and optimal time decay rate of the solution with initial datum <span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><mo>(</mo><mover><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>x</mi></mrow><mrow><mo>∞</mo></mrow></msubsup></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>∩</mo><mover><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>x</mi></mrow><mrow><mi>r</mi></mrow></msubsup></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msubsup></mrow></msub><mo>+</mo><msub><mrow><mo>‖</mo><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><msub><mrow><mi>f</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><mover><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>x</mi></mrow><mrow><mi>r</mi></mrow></msubsup></mrow><mrow><mo>ˆ</mo></mrow></mover><msubsup><mrow><mi>L</mi></mrow><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msubsup></mrow></msub></math></span> smallness, where <span><math><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></math></span> is the Riesz potential, <span><math><mover><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>x</mi></mrow><mrow><mi>r</mi></mrow></msubsup></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span> is the Fourier-Hertz space equipped with the norm <span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><mover><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>x</mi></mrow><mrow><mi>r</mi></mrow></msubsup></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow></msub><mo>=</mo><msub><mrow><mo>‖</mo><mover><mrow><msub><mrow><mi>f</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>‖</mo></mrow><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>ξ</mi></mrow><mrow><mi>p</mi></mrow></msubsup></mrow></msub></math></span> with <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>r</mi></mrow></mfrac><mo>=</mo><mn>1</mn></math></span> and <span><math><mover><mrow><msub><mrow><mi>f</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>(</mo><mi>ξ</mi><mo>,</mo><mi>v</mi><mo>)</mo></math></span> is the Fourier transform in space variable. Moreover, we obtain the propagation of Gevrey and Gelfand-Shilov regularity in the space and velocity variables.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"442 ","pages":"Article 113551"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005789","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study the Cauchy problem for the inhomogeneous Landau equation with hard potentials and moderately soft potentials in space with . In perturbation framework, we establish the global existence and optimal time decay rate of the solution with initial datum smallness, where is the Riesz potential, is the Fourier-Hertz space equipped with the norm with and is the Fourier transform in space variable. Moreover, we obtain the propagation of Gevrey and Gelfand-Shilov regularity in the space and velocity variables.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics