Extended quadratic truncated rotation symmetric Boolean functions

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED
Thomas W. Cusick, Younhwan Cheon
{"title":"Extended quadratic truncated rotation symmetric Boolean functions","authors":"Thomas W. Cusick,&nbsp;Younhwan Cheon","doi":"10.1016/j.amc.2025.129601","DOIUrl":null,"url":null,"abstract":"<div><div>A Boolean function in <em>n</em> variables <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is rotation symmetric (RS) if the function is invariant under cyclic rotation of the variables. If the function is generated by a single monomial it is called monomial rotation symmetric (MRS). An MRS function is called truncated rotation symmetric (TRS) if the expansion for the <em>n</em> terms of the MRS function is stopped at the first term where <span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> occurs. This paper studies extended TRS functions, which are generated by adding the next monomial in the expansion of the MRS function to the TRS function. For example, the MRS function in 5 variables generated by <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> gives the TRS function <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>+</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>x</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>+</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msub><msub><mrow><mi>x</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span> and the extended TRS function <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>+</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>x</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>+</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msub><msub><mrow><mi>x</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>+</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>x</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>. It is shown that the Hamming weights of any quadratic TRS function satisfy the same linear recursion as the weights of the corresponding extended TRS function, and also that the weights for the two functions are very frequently equal. The problem of finding the Dickson form (very difficult for a general quadratic function) for any quadratic extended TRS function is solved and an explicit generating function for the weights of any quadratic extended TRS function is found.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"507 ","pages":"Article 129601"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325003273","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A Boolean function in n variables x1,,xn is rotation symmetric (RS) if the function is invariant under cyclic rotation of the variables. If the function is generated by a single monomial it is called monomial rotation symmetric (MRS). An MRS function is called truncated rotation symmetric (TRS) if the expansion for the n terms of the MRS function is stopped at the first term where xn occurs. This paper studies extended TRS functions, which are generated by adding the next monomial in the expansion of the MRS function to the TRS function. For example, the MRS function in 5 variables generated by x1x3 gives the TRS function x1x3+x2x4+x3x5 and the extended TRS function x1x3+x2x4+x3x5+x1x4. It is shown that the Hamming weights of any quadratic TRS function satisfy the same linear recursion as the weights of the corresponding extended TRS function, and also that the weights for the two functions are very frequently equal. The problem of finding the Dickson form (very difficult for a general quadratic function) for any quadratic extended TRS function is solved and an explicit generating function for the weights of any quadratic extended TRS function is found.
扩展二次截断旋转对称布尔函数
有n个变量x1,…,xn的布尔函数,如果函数在变量的循环旋转下不变,则为旋转对称(RS)。如果函数是由单个单项式生成的,则称为单项式旋转对称(MRS)。如果MRS函数的n项的展开在出现xn的第一项处停止,则称为截断旋转对称(TRS)。本文研究了扩展TRS函数,它是将MRS函数展开中的下一个单项加到TRS函数中生成的。例如,由x1x3生成的5个变量中的MRS函数得到TRS函数x1x3+x2x4+x3x5和扩展后的TRS函数x1x3+x2x4+x3x5+x1x4。证明了任何二次型TRS函数的Hamming权值与相应的扩展TRS函数的权值都满足相同的线性递归,并且这两个函数的权值经常相等。解决了任何二次扩展TRS函数的Dickson形式(一般二次函数很难找到)问题,并找到了任何二次扩展TRS函数权值的显式生成函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信