Algebraic properties of Toeplitz + Hankel operators

IF 1.2 3区 数学 Q1 MATHEMATICS
Caixing Gu
{"title":"Algebraic properties of Toeplitz + Hankel operators","authors":"Caixing Gu","doi":"10.1016/j.jmaa.2025.129797","DOIUrl":null,"url":null,"abstract":"<div><div>Recently an elegant result of Sang <span><span>[29]</span></span> characterizes when the product of two Toeplitz + Hankel operators is a Toeplitz + Hankel operator ((T+H)-operator). This result unifies several product problems for Toeplitz and Hankel operators. We extend the method of the author <span><span>[19]</span></span> on product problems for block Toeplitz and Hankel operators to give a short proof and some refinements of the result of Sang. Furthermore, we identify (T+H)-operators which are isometries or unitaries. We characterize when two arbitrary (T+H)-operators commute. We introduce several classes of (T+H)-operators which extend some classes of (T+H)-operators studied by Basor and Ehrhardt <span><span>[2]</span></span> <span><span>[3]</span></span> and Sang <span><span>[29]</span></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129797"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25005785","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Recently an elegant result of Sang [29] characterizes when the product of two Toeplitz + Hankel operators is a Toeplitz + Hankel operator ((T+H)-operator). This result unifies several product problems for Toeplitz and Hankel operators. We extend the method of the author [19] on product problems for block Toeplitz and Hankel operators to give a short proof and some refinements of the result of Sang. Furthermore, we identify (T+H)-operators which are isometries or unitaries. We characterize when two arbitrary (T+H)-operators commute. We introduce several classes of (T+H)-operators which extend some classes of (T+H)-operators studied by Basor and Ehrhardt [2] [3] and Sang [29].
Toeplitz + Hankel算子的代数性质
最近,Sang[29]给出了一个优美的结果,它刻画了两个Toeplitz + Hankel算子的乘积是一个Toeplitz + Hankel算子((T+H)-算子)。这个结果统一了Toeplitz算子和Hankel算子的几个乘积问题。我们推广了作者[19]关于块Toeplitz和Hankel算子积问题的方法,给出了Sang结果的一个简短证明和一些改进。进一步,我们确定了(T+H)-算子是等距或酉算子。我们刻画了两个任意(T+H)算子交换时的特征。我们引入了几类(T+H)算子,它们扩展了Basor和Ehrhardt研究的(T+H)算子[2][3]和Sang[29]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信