Davide Bernardi , Elias P. Casula , Lorenzo Rocchi , Luciano Fadiga , Giacomo Koch , David Papo
{"title":"Multivariate empirical mode decomposition reveals markers of Alzheimer’s Disease in the oscillatory response to transcranial magnetic stimulation","authors":"Davide Bernardi , Elias P. Casula , Lorenzo Rocchi , Luciano Fadiga , Giacomo Koch , David Papo","doi":"10.1016/j.clinph.2025.2110756","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective:</h3><div>To investigate EEG activity following transcranial magnetic stimulation (TMS) of the dorsolateral prefrontal cortex of Alzheimer’s Disease (AD) patients and control subjects using a data-driven characterization of brain oscillatory activity without prescribed frequency bands.</div></div><div><h3>Methods:</h3><div>We employed multivariate empirical mode decomposition (MEMD) to analyze the TMS-EEG response of 38 AD patients and 21 control subjects. We used the distinct features of EEG oscillatory modes to train a classification algorithm, a support vector machine.</div></div><div><h3>Results:</h3><div>AD patients exhibited a weakened slow-frequency response. Faster oscillatory modes displayed a biphasic response pattern in controls, characterized by an early increase followed by a widespread suppression, which was reduced in AD patients. Classification achieved robust discrimination performance (85%/23% true/false positive rate).</div></div><div><h3>Conclusions:</h3><div>AD causes an impairment in the oscillatory response to TMS that has distinct features in different frequency ranges. These features uncovered by MEMD could serve as an effective EEG diagnostic marker.</div></div><div><h3>Significance:</h3><div>Early detection of AD requires diagnostic tools that are both effective and accessible. Combining EEG with TMS shows great promise. Our results and method enhance TMS-EEG both as a practical diagnostic tool, and as a way to further our understanding of AD pathophysiology.</div></div>","PeriodicalId":10671,"journal":{"name":"Clinical Neurophysiology","volume":"176 ","pages":"Article 2110756"},"PeriodicalIF":3.6000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Neurophysiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138824572500608X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective:
To investigate EEG activity following transcranial magnetic stimulation (TMS) of the dorsolateral prefrontal cortex of Alzheimer’s Disease (AD) patients and control subjects using a data-driven characterization of brain oscillatory activity without prescribed frequency bands.
Methods:
We employed multivariate empirical mode decomposition (MEMD) to analyze the TMS-EEG response of 38 AD patients and 21 control subjects. We used the distinct features of EEG oscillatory modes to train a classification algorithm, a support vector machine.
Results:
AD patients exhibited a weakened slow-frequency response. Faster oscillatory modes displayed a biphasic response pattern in controls, characterized by an early increase followed by a widespread suppression, which was reduced in AD patients. Classification achieved robust discrimination performance (85%/23% true/false positive rate).
Conclusions:
AD causes an impairment in the oscillatory response to TMS that has distinct features in different frequency ranges. These features uncovered by MEMD could serve as an effective EEG diagnostic marker.
Significance:
Early detection of AD requires diagnostic tools that are both effective and accessible. Combining EEG with TMS shows great promise. Our results and method enhance TMS-EEG both as a practical diagnostic tool, and as a way to further our understanding of AD pathophysiology.
期刊介绍:
As of January 1999, The journal Electroencephalography and Clinical Neurophysiology, and its two sections Electromyography and Motor Control and Evoked Potentials have amalgamated to become this journal - Clinical Neurophysiology.
Clinical Neurophysiology is the official journal of the International Federation of Clinical Neurophysiology, the Brazilian Society of Clinical Neurophysiology, the Czech Society of Clinical Neurophysiology, the Italian Clinical Neurophysiology Society and the International Society of Intraoperative Neurophysiology.The journal is dedicated to fostering research and disseminating information on all aspects of both normal and abnormal functioning of the nervous system. The key aim of the publication is to disseminate scholarly reports on the pathophysiology underlying diseases of the central and peripheral nervous system of human patients. Clinical trials that use neurophysiological measures to document change are encouraged, as are manuscripts reporting data on integrated neuroimaging of central nervous function including, but not limited to, functional MRI, MEG, EEG, PET and other neuroimaging modalities.