{"title":"Testing containment of tropical hypersurfaces within polynomial complexity","authors":"Dima Grigoriev","doi":"10.1016/j.jsc.2025.102472","DOIUrl":null,"url":null,"abstract":"<div><div>For tropical <em>n</em>-variable polynomials <span><math><mi>f</mi><mo>,</mo><mi>g</mi></math></span> a criterion of containment for tropical hypersurfaces <span><math><mrow><mi>Trop</mi></mrow><mo>(</mo><mi>f</mi><mo>)</mo><mo>⊂</mo><mrow><mi>Trop</mi></mrow><mo>(</mo><mi>g</mi><mo>)</mo></math></span> is provided in terms of their Newton polyhedra <span><math><mi>N</mi><mo>(</mo><mi>f</mi><mo>)</mo><mo>,</mo><mi>N</mi><mo>(</mo><mi>g</mi><mo>)</mo><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span>. Namely, <span><math><mrow><mi>Trop</mi></mrow><mo>(</mo><mi>f</mi><mo>)</mo><mo>⊂</mo><mrow><mi>Trop</mi></mrow><mo>(</mo><mi>g</mi><mo>)</mo></math></span> iff for every vertex <em>v</em> of <span><math><mi>N</mi><mo>(</mo><mi>g</mi><mo>)</mo></math></span> there exists a unique vertex <em>w</em> of <span><math><mi>N</mi><mo>(</mo><mi>f</mi><mo>)</mo></math></span> such that for the tangent cones it holds <span><math><mi>v</mi><mo>−</mo><mi>w</mi><mo>+</mo><mi>N</mi><msub><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mrow><mi>w</mi></mrow></msub><mo>⊆</mo><mi>N</mi><msub><mrow><mo>(</mo><mi>g</mi><mo>)</mo></mrow><mrow><mi>v</mi></mrow></msub></math></span>. Relying on this criterion an algorithm is designed which tests whether <span><math><mrow><mi>Trop</mi></mrow><mo>(</mo><mi>f</mi><mo>)</mo><mo>⊂</mo><mrow><mi>Trop</mi></mrow><mo>(</mo><mi>g</mi><mo>)</mo></math></span> within polynomial complexity.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"132 ","pages":"Article 102472"},"PeriodicalIF":0.6000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717125000549","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
For tropical n-variable polynomials a criterion of containment for tropical hypersurfaces is provided in terms of their Newton polyhedra . Namely, iff for every vertex v of there exists a unique vertex w of such that for the tangent cones it holds . Relying on this criterion an algorithm is designed which tests whether within polynomial complexity.
期刊介绍:
An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects.
It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.