Heber Fabbri , Michael A. Maedo , Pedro Cleto , Osvaldo L. Manzoli , Marcelo Sánchez
{"title":"Coupled thermo-hydro-mechanical modeling of fracture interactions in enhanced geothermal systems","authors":"Heber Fabbri , Michael A. Maedo , Pedro Cleto , Osvaldo L. Manzoli , Marcelo Sánchez","doi":"10.1016/j.gete.2025.100698","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents the use of the mesh fragmentation technique (MFT) for modeling hydraulic stimulation and heat production in enhanced geothermal systems (EGS). This method simulates evolving hydraulic fractures induced by thermo-hydro-mechanical (THM) phenomena and their interaction with pre-existing natural fractures, forming an interconnected network for water circulation and energy production. The MFT combines high aspect ratio (HAR) elements within a standard finite element (FE), using appropriate constitutive models to describe mechanical, hydraulic, and thermal behaviors. Fracture evolution occurs naturally, governed only by local THM conditions and material properties, without needing special tracking algorithms or remeshing techniques. This approach relies on continuum mechanics and standard FE technology, employing simple models for energy dissipation, flow, and thermal transport due to enhanced porosity and permeability. Three application cases validate this technique. First, the proposed model shows excellent agreement with published thermo-hydraulic solutions, validating its implementation. Second, it effectively handles interactions between natural and hydraulic-driven fractures. Third, it models EGS operation for over 60 years under different <em>in-situ</em> stress scenarios and natural fracture densities. The results show the technique's effectiveness in modeling complex EGS scenarios and demonstrate its potential for optimizing EGS design.</div></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"43 ","pages":"Article 100698"},"PeriodicalIF":3.7000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics for Energy and the Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352380825000632","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents the use of the mesh fragmentation technique (MFT) for modeling hydraulic stimulation and heat production in enhanced geothermal systems (EGS). This method simulates evolving hydraulic fractures induced by thermo-hydro-mechanical (THM) phenomena and their interaction with pre-existing natural fractures, forming an interconnected network for water circulation and energy production. The MFT combines high aspect ratio (HAR) elements within a standard finite element (FE), using appropriate constitutive models to describe mechanical, hydraulic, and thermal behaviors. Fracture evolution occurs naturally, governed only by local THM conditions and material properties, without needing special tracking algorithms or remeshing techniques. This approach relies on continuum mechanics and standard FE technology, employing simple models for energy dissipation, flow, and thermal transport due to enhanced porosity and permeability. Three application cases validate this technique. First, the proposed model shows excellent agreement with published thermo-hydraulic solutions, validating its implementation. Second, it effectively handles interactions between natural and hydraulic-driven fractures. Third, it models EGS operation for over 60 years under different in-situ stress scenarios and natural fracture densities. The results show the technique's effectiveness in modeling complex EGS scenarios and demonstrate its potential for optimizing EGS design.
期刊介绍:
The aim of the Journal is to publish research results of the highest quality and of lasting importance on the subject of geomechanics, with the focus on applications to geological energy production and storage, and the interaction of soils and rocks with the natural and engineered environment. Special attention is given to concepts and developments of new energy geotechnologies that comprise intrinsic mechanisms protecting the environment against a potential engineering induced damage, hence warranting sustainable usage of energy resources.
The scope of the journal is broad, including fundamental concepts in geomechanics and mechanics of porous media, the experiments and analysis of novel phenomena and applications. Of special interest are issues resulting from coupling of particular physics, chemistry and biology of external forcings, as well as of pore fluid/gas and minerals to the solid mechanics of the medium skeleton and pore fluid mechanics. The multi-scale and inter-scale interactions between the phenomena and the behavior representations are also of particular interest. Contributions to general theoretical approach to these issues, but of potential reference to geomechanics in its context of energy and the environment are also most welcome.