Poly((biphenyl)m-(aryl methylpiperidine)n-(dibenzothiophene)p)-Based Proton Exchange Membrane for High-Temperature Fuel Cell Application

IF 4.7 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Divya Kumar, Murali Ravi, Qingqing Liu, Huiyuan Liu, Thangaraj Thiruppathiraja, Weiqi Zhang, Qian Xu, Senthilkumar Lakshmipathi and Huaneng Su*, 
{"title":"Poly((biphenyl)m-(aryl methylpiperidine)n-(dibenzothiophene)p)-Based Proton Exchange Membrane for High-Temperature Fuel Cell Application","authors":"Divya Kumar,&nbsp;Murali Ravi,&nbsp;Qingqing Liu,&nbsp;Huiyuan Liu,&nbsp;Thangaraj Thiruppathiraja,&nbsp;Weiqi Zhang,&nbsp;Qian Xu,&nbsp;Senthilkumar Lakshmipathi and Huaneng Su*,&nbsp;","doi":"10.1021/acsapm.5c0139610.1021/acsapm.5c01396","DOIUrl":null,"url":null,"abstract":"<p >The development of proton exchange membranes (PEMs) with sustained performance above 180 °C remains a critical challenge for high-temperature PEM fuel cells (HT-PEMFC) due to the rapid degradation and phosphoric acid (PA) leaching of conventional PA-doped polybenzimidazole (PBI) membranes. Here, a terpolymer of poly((biphenyl)<sub>m</sub>-(aryl methylpiperidine)<sub>n</sub>-(dibenzothiophene)<sub>p</sub>) (P-BTSAM) membrane is synthesized via superacid-catalyzed Friedel–Crafts polymerization using 4-<i>N</i>-methylpiperidone, dibenzothiophene (BTS), and biphenyl (BP). DBT substitution was optimized by adjusting the biphenyl monomer ratio, profoundly affecting the membranes’ physicochemical properties through spectroscopic and thermal characterization. The membranes showed exceptional thermal stability, retaining 60% of their weight above 500 °C and maintaining structural integrity over 380 °C. The thiophene ring-conjugated structure increased charge density, significantly enhancing phosphoric acid (PA) affinity and forming a hydrogen-bonded network that improved proton mobility. Proton conductivity measurements indicated that the P-BTSAM<sub>20</sub> membrane showed an impressive conductivity value of 9.2 × 10<sup>–2</sup> S cm<sup>–1</sup> at 180 °C. In H<sub>2</sub>/O<sub>2</sub> HT-PEMFC tests at 180 °C, P-BTSAM<sub>20</sub> delivered a peak power density of 0.76 W/cm<sup>2</sup>, surpassing commercial PA-doped PBI membranes (0.52 W/cm<sup>2</sup>). The membrane showcased durability over 160 h with a fixed current density of 0.4 A/cm<sup>2</sup> at 160 °C. These findings indicate that P-BTSAM<sub>20</sub> extends PEM operational limits beyond 180 °C while maintaining stability. Theoretical studies confirmed that the P-BTSAM structure possesses excellent chemical stability. Moreover, the straightforward synthesis positions this membrane as a practical alternative for high-temperature PEM fuel cell (HT-PEMFC) applications, overcoming performance and economic challenges to commercialization.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"7 11","pages":"7633–7642 7633–7642"},"PeriodicalIF":4.7000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsapm.5c01396","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of proton exchange membranes (PEMs) with sustained performance above 180 °C remains a critical challenge for high-temperature PEM fuel cells (HT-PEMFC) due to the rapid degradation and phosphoric acid (PA) leaching of conventional PA-doped polybenzimidazole (PBI) membranes. Here, a terpolymer of poly((biphenyl)m-(aryl methylpiperidine)n-(dibenzothiophene)p) (P-BTSAM) membrane is synthesized via superacid-catalyzed Friedel–Crafts polymerization using 4-N-methylpiperidone, dibenzothiophene (BTS), and biphenyl (BP). DBT substitution was optimized by adjusting the biphenyl monomer ratio, profoundly affecting the membranes’ physicochemical properties through spectroscopic and thermal characterization. The membranes showed exceptional thermal stability, retaining 60% of their weight above 500 °C and maintaining structural integrity over 380 °C. The thiophene ring-conjugated structure increased charge density, significantly enhancing phosphoric acid (PA) affinity and forming a hydrogen-bonded network that improved proton mobility. Proton conductivity measurements indicated that the P-BTSAM20 membrane showed an impressive conductivity value of 9.2 × 10–2 S cm–1 at 180 °C. In H2/O2 HT-PEMFC tests at 180 °C, P-BTSAM20 delivered a peak power density of 0.76 W/cm2, surpassing commercial PA-doped PBI membranes (0.52 W/cm2). The membrane showcased durability over 160 h with a fixed current density of 0.4 A/cm2 at 160 °C. These findings indicate that P-BTSAM20 extends PEM operational limits beyond 180 °C while maintaining stability. Theoretical studies confirmed that the P-BTSAM structure possesses excellent chemical stability. Moreover, the straightforward synthesis positions this membrane as a practical alternative for high-temperature PEM fuel cell (HT-PEMFC) applications, overcoming performance and economic challenges to commercialization.

Abstract Image

聚(联苯)m-(芳基甲基哌啶)n-(二苯并噻吩)p基质子交换膜在高温燃料电池中的应用
由于传统的聚苯并咪唑(PBI)膜的快速降解和磷酸(PA)浸出,开发具有180°C以上持续性能的质子交换膜(PEM)仍然是高温PEM燃料电池(HT-PEMFC)面临的一个关键挑战。本文以4- n-甲基哌啶酮、二苯并噻吩(BTS)和联苯(BP)为原料,通过超强酸催化Friedel-Crafts聚合,合成了聚((联苯)m-(芳基甲基哌啶)n-(二苯并噻吩)p) (p - btsam)膜。通过调整联苯单体的比例来优化DBT取代,通过光谱和热表征对膜的理化性质产生了深远的影响。该膜表现出优异的热稳定性,在500°C以上保持60%的重量,在380°C以上保持结构完整性。噻吩环共轭结构增加了电荷密度,显著增强了磷酸(PA)的亲和力,形成了一个氢键网络,提高了质子的迁移率。质子电导率测量表明,P-BTSAM20膜在180°C时的电导率值为9.2 × 10-2 S cm-1。在180°C的H2/O2 HT-PEMFC测试中,P-BTSAM20提供了0.76 W/cm2的峰值功率密度,超过了商用pa掺杂PBI膜(0.52 W/cm2)。在160°C的固定电流密度为0.4 a /cm2的情况下,该膜的耐久性超过160小时。这些发现表明,P-BTSAM20在保持稳定性的同时将PEM的工作极限扩展到180°C以上。理论研究证实P-BTSAM结构具有优异的化学稳定性。此外,简单的合成使这种膜成为高温PEM燃料电池(HT-PEMFC)应用的实用替代品,克服了商业化的性能和经济挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
6.00%
发文量
810
期刊介绍: ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信