MoS2-Nanosheet Based Optoelectronic Synaptic Transistor with Integrated Computing for Environment-Adaptive Artificial Retina

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shiran Nie, Min Zang, Dandan Hao, Lin Tang, Lei Li*, Xingqiang Liu, Xuming Zou, Jinshui Miao, Fukai Shan* and Zhenyu Yang*, 
{"title":"MoS2-Nanosheet Based Optoelectronic Synaptic Transistor with Integrated Computing for Environment-Adaptive Artificial Retina","authors":"Shiran Nie,&nbsp;Min Zang,&nbsp;Dandan Hao,&nbsp;Lin Tang,&nbsp;Lei Li*,&nbsp;Xingqiang Liu,&nbsp;Xuming Zou,&nbsp;Jinshui Miao,&nbsp;Fukai Shan* and Zhenyu Yang*,&nbsp;","doi":"10.1021/acsanm.5c0208810.1021/acsanm.5c02088","DOIUrl":null,"url":null,"abstract":"<p >Recent advances in information processing have led to the development of innovative devices that mimic multiple biological sensory systems. The visual system plays a crucial role in information acquisition, with approximately 80% of environmental information being processed through human vision. The demand for energy-efficient and multifunctional devices in complex applications has fueled the exploration of optoelectronic synapses. Here, we demonstrate a MoS<sub>2</sub>-nanosheet based optoelectronic synaptic transistor with Au nanocrystal memory cells, which integrates sensing, memory, and processing functions into a single device. This transistor exhibits significant performance in both electrical and optical operation modes, including the endurance of 1000 electrical storage/erasure cycles, remarkable electrical retention time for 10 years, over 2000 s optical storage time, and light current-to-dark current ratio exceeding 10<sup>4</sup>. The device features both homosynaptic and heterosynaptic plasticity, enabling the simulation of short-term memory, long-term memory, and synaptic weight regulation through electrical and optical pulse modulation. Additionally, we have achieved ambient light adaptation and target object recognition. This study presents a promising strategy for advancing artificial intelligence visual systems.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 23","pages":"12296–12305 12296–12305"},"PeriodicalIF":5.3000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c02088","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in information processing have led to the development of innovative devices that mimic multiple biological sensory systems. The visual system plays a crucial role in information acquisition, with approximately 80% of environmental information being processed through human vision. The demand for energy-efficient and multifunctional devices in complex applications has fueled the exploration of optoelectronic synapses. Here, we demonstrate a MoS2-nanosheet based optoelectronic synaptic transistor with Au nanocrystal memory cells, which integrates sensing, memory, and processing functions into a single device. This transistor exhibits significant performance in both electrical and optical operation modes, including the endurance of 1000 electrical storage/erasure cycles, remarkable electrical retention time for 10 years, over 2000 s optical storage time, and light current-to-dark current ratio exceeding 104. The device features both homosynaptic and heterosynaptic plasticity, enabling the simulation of short-term memory, long-term memory, and synaptic weight regulation through electrical and optical pulse modulation. Additionally, we have achieved ambient light adaptation and target object recognition. This study presents a promising strategy for advancing artificial intelligence visual systems.

基于mos2纳米片的集成计算光电突触晶体管用于环境自适应人工视网膜
信息处理的最新进展导致了模仿多种生物感觉系统的创新设备的发展。视觉系统在信息获取中起着至关重要的作用,大约80%的环境信息是通过人类视觉处理的。在复杂应用中对节能和多功能器件的需求推动了光电突触的探索。在这里,我们展示了一个基于二硫化钼纳米片的光电突触晶体管与金纳米晶记忆细胞,它集成了传感、记忆和处理功能到一个单一的器件。该晶体管在电气和光学工作模式下都表现出显著的性能,包括1000次电存储/擦除周期的耐久性,10年的显着电保持时间,超过2000 s的光存储时间,以及超过104的光暗电流比。该装置具有同突触和异突触可塑性,可以通过电脉冲和光脉冲调制模拟短期记忆、长期记忆和突触重量调节。此外,我们还实现了环境光适应和目标物体识别。这项研究为推进人工智能视觉系统提供了一个有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信