Synergistic Covalent/Hydrogen-Bonded Dual-Network Architectures: Self-Healing Meets High-Performance CO2 Separation Membranes

IF 4.7 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jun Cai, Yang Song, Yunfei Yu, Jie Chen, Chao Wang, Xiaoli Ding, Xue Yang* and Jianqiang Meng*, 
{"title":"Synergistic Covalent/Hydrogen-Bonded Dual-Network Architectures: Self-Healing Meets High-Performance CO2 Separation Membranes","authors":"Jun Cai,&nbsp;Yang Song,&nbsp;Yunfei Yu,&nbsp;Jie Chen,&nbsp;Chao Wang,&nbsp;Xiaoli Ding,&nbsp;Xue Yang* and Jianqiang Meng*,&nbsp;","doi":"10.1021/acsapm.5c0123010.1021/acsapm.5c01230","DOIUrl":null,"url":null,"abstract":"<p >Ion gel membranes exhibit high efficiency and environmental friendliness for CO<sub>2</sub>/N<sub>2</sub> separation, but their poor mechanical strength and inability to self-heal after physical damage hinder their industrial application. To overcome these limitations, we propose an efficient one-pot method for preparing dual-network (DN) ion gel membranes with enhanced gas separation and self-healing properties. This method involves constructing dual self-healing networks: the first network (FN), formed through a Schiff base reaction between O,O’-bis(2-aminopropyl)poly(propylene glycol)-<i>block</i>-poly(ethylene glycol)-<i>block</i>-poly(propylene glycol) (H<sub>2</sub>N–PPG-PEG-PPG-NH<sub>2</sub>) and 1,3,5-benzenetricarboxaldehyde (BTC), and the second network (SN), consisting of polyurethane (PU) featuring a quadruple hydrogen-bonded cross-linked network. By optimizing the ratio of the two networks to 5:2 and adjusting the ionic liquid content ([EMIM]TFSI) to 60 wt %, the resulting DN membrane demonstrates exceptional CO<sub>2</sub> gas separation performance, with a CO<sub>2</sub> permeability (<i>P</i><sub>CO2</sub>) of 726 Barrer and a selectivity (α<sub>CO2/N2</sub>) of 23. This underscores the potential of this process for effective gas separation applications. Furthermore, compared to conventional ion gel membranes, the DN membranes exhibit significant improvements in mechanical properties and self-healing capabilities, while maintaining high CO<sub>2</sub> permeability and selectivity.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"7 11","pages":"7554–7565 7554–7565"},"PeriodicalIF":4.7000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsapm.5c01230","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ion gel membranes exhibit high efficiency and environmental friendliness for CO2/N2 separation, but their poor mechanical strength and inability to self-heal after physical damage hinder their industrial application. To overcome these limitations, we propose an efficient one-pot method for preparing dual-network (DN) ion gel membranes with enhanced gas separation and self-healing properties. This method involves constructing dual self-healing networks: the first network (FN), formed through a Schiff base reaction between O,O’-bis(2-aminopropyl)poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol) (H2N–PPG-PEG-PPG-NH2) and 1,3,5-benzenetricarboxaldehyde (BTC), and the second network (SN), consisting of polyurethane (PU) featuring a quadruple hydrogen-bonded cross-linked network. By optimizing the ratio of the two networks to 5:2 and adjusting the ionic liquid content ([EMIM]TFSI) to 60 wt %, the resulting DN membrane demonstrates exceptional CO2 gas separation performance, with a CO2 permeability (PCO2) of 726 Barrer and a selectivity (αCO2/N2) of 23. This underscores the potential of this process for effective gas separation applications. Furthermore, compared to conventional ion gel membranes, the DN membranes exhibit significant improvements in mechanical properties and self-healing capabilities, while maintaining high CO2 permeability and selectivity.

Abstract Image

协同共价/氢键双网络结构:自修复满足高性能CO2分离膜
离子凝胶膜具有高效、环保的CO2/N2分离技术,但其机械强度较差,物理损伤后不能自愈,阻碍了其工业应用。为了克服这些限制,我们提出了一种高效的一锅法来制备具有增强气体分离和自愈性能的双网络(DN)离子凝胶膜。该方法涉及构建双重自修复网络:第一个网络(FN)是通过O,O ' -双(2-氨基丙基)聚(丙二醇)-嵌段聚(乙二醇)-嵌段聚(丙二醇)(H2N-PPG-PEG-PPG-NH2)和1,3,5-苯三甲酸(BTC)之间的希夫碱反应形成的,第二个网络(SN)是由聚氨酯(PU)组成的,具有四重氢键交联网络。通过将两个网络的比例优化为5:2,并将离子液体含量([EMIM]TFSI)调整为60 wt %,得到的DN膜具有优异的CO2气体分离性能,CO2渗透率(PCO2)为726 Barrer,选择性(αCO2/N2)为23。这强调了该工艺在有效气体分离应用中的潜力。此外,与传统离子凝胶膜相比,DN膜在力学性能和自修复能力方面有显著改善,同时保持了较高的CO2渗透性和选择性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
6.00%
发文量
810
期刊介绍: ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信