Boosting Performance of Quasi-solid-state Zinc Ion Batteries via Zincophilic Solubilization

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yifan Wang, Weilin Yan, Xuejun Zhu, Jinghao Li, Zhaoqian Li, Hong Zhang, Yingke Ren, Lie Mo, Yang Huang, Lei Zhang, Linhua Hu
{"title":"Boosting Performance of Quasi-solid-state Zinc Ion Batteries via Zincophilic Solubilization","authors":"Yifan Wang, Weilin Yan, Xuejun Zhu, Jinghao Li, Zhaoqian Li, Hong Zhang, Yingke Ren, Lie Mo, Yang Huang, Lei Zhang, Linhua Hu","doi":"10.1002/anie.202508556","DOIUrl":null,"url":null,"abstract":"Hydrogel electrolytes hold great promise in tackling severe issues facing aqueous zinc-ion batteries (AZIBs). However, to satisfy the quest of flexible and eco-friendly batteries, developing low-cost and high mechanical durability hydrogel electrolyte remains a challenge. Here, employing the zincophilic solubilizer urea, we break the classical concentration limits of the low-cost Zn(Ac)2 salt and introduce it into the hydrogel skeleton. The “salting out” effect give the polymer chain sediments a tighter bundle and twist effect. The as-formed hydrogel electrolyte can endure 557% high elongation and 3.7 MPa compressive strength to resist repeated zinc plating/striping process and external physical stimuli. The in-situ polyurea solid electrolyte interphase (SEI) layer leads to thermodynamically stable anode/electrolyte interface. Utilizing the hydrogel electrolyte, the zinc anode shows high reversibility, leading to an average Coulombic efficiency (CE) of 99.93% for 150 cycles on the Zn//Cu battery. When assembled with NH4V4O10 cathode (NVO), the full battery delivers a high capacity of 253.8 mAh g-1 beyond 1000 cycles longevity at 1 A g-1. The pouch battery also shows a high capacity of 280.7 mAh g-1 at 500 mA g-1 and operate steadily for 90.13% retention after 200 cycles, and maintained a stable voltage even experienced bending and folding.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"151 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202508556","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogel electrolytes hold great promise in tackling severe issues facing aqueous zinc-ion batteries (AZIBs). However, to satisfy the quest of flexible and eco-friendly batteries, developing low-cost and high mechanical durability hydrogel electrolyte remains a challenge. Here, employing the zincophilic solubilizer urea, we break the classical concentration limits of the low-cost Zn(Ac)2 salt and introduce it into the hydrogel skeleton. The “salting out” effect give the polymer chain sediments a tighter bundle and twist effect. The as-formed hydrogel electrolyte can endure 557% high elongation and 3.7 MPa compressive strength to resist repeated zinc plating/striping process and external physical stimuli. The in-situ polyurea solid electrolyte interphase (SEI) layer leads to thermodynamically stable anode/electrolyte interface. Utilizing the hydrogel electrolyte, the zinc anode shows high reversibility, leading to an average Coulombic efficiency (CE) of 99.93% for 150 cycles on the Zn//Cu battery. When assembled with NH4V4O10 cathode (NVO), the full battery delivers a high capacity of 253.8 mAh g-1 beyond 1000 cycles longevity at 1 A g-1. The pouch battery also shows a high capacity of 280.7 mAh g-1 at 500 mA g-1 and operate steadily for 90.13% retention after 200 cycles, and maintained a stable voltage even experienced bending and folding.
亲锌增溶提高准固态锌离子电池性能
水凝胶电解质在解决水锌离子电池(azib)面临的严重问题方面具有很大的前景。然而,为了满足柔性和环保电池的需求,开发低成本和高机械耐久性的水凝胶电解质仍然是一个挑战。本研究采用亲锌增溶剂尿素,突破传统低成本Zn(Ac)2盐的浓度限制,将其引入水凝胶骨架中。“盐析”效应使聚合物链沉积物具有更紧密的束和扭曲效应。形成的水凝胶电解质可承受557%的高伸率和3.7 MPa的抗压强度,可抵抗反复镀锌/剥锌过程和外部物理刺激。聚脲原位固体电解质界面层(SEI)形成了热力学稳定的阳极/电解质界面。使用水凝胶电解质,锌阳极表现出高可逆性,在锌/铜电池上循环150次,平均库仑效率(CE)达到99.93%。当与nh4v4010阴极(NVO)组装时,全电池提供253.8 mAh g-1的高容量,超过1000次循环寿命,在1 a g-1下。在500ma g-1下,电池容量高达280.7 mAh g-1,在200次循环后,电池的保留率为90.13%,即使经历弯曲和折叠,也能保持稳定的电压。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信