{"title":"Enhanced Sonodynamic Bacterial Elimination and Wound Healing Therapy Based on Lanthanide Ion Doped Bi2WO6 Nanosheets and Hydrogel Platform","authors":"Xinyue Lao, Qianqian Bai, Yifei Zhao, Xingyi Dai, Yuan Liu, Xiao Han, Jianhua Hao","doi":"10.1002/adfm.202511512","DOIUrl":null,"url":null,"abstract":"Sonodynamic therapy (SDT) offers tremendous potential in preventing multidrug-resistant bacterial infections, as it is noninvasive and requires no antibiotic dependence, effectively addressing the issue of bacterial resistance. This study implements an ultrasound (US) responsive 2D Bi<sub>2</sub>WO<sub>6</sub> nanosheets (BWO NSs) as sonosensitizers to generate reactive oxygen species (ROS), resulting in sonodynamic broad-spectrum bacterial elimination. Notably, lanthanide Ytterbium ions are introduced (BWO-x%Yb NSs) to boost the generation of ROS, leading to an enhanced antibacterial effect. The RNA sequencing further reveals the underlying antibacterial mechanism, wherein ROS induces lipid oxidation in bacterial cell membranes and deterioration of membrane integrity, ultimately leading to cellular death. In vitro experiments verify that BWO-x%Yb NSs sonosensitizers attain 100% elimination on Methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) and <i>Escherichia coli (E. coli</i>) under US irradiation, demonstrating a broad-spectrum bactericidal ability. Furthermore, to improve the biocompatibility for in vivo SDT, BWO-x%Yb NSs are integrated with hydrogel, serving as a sonosensitizer-hydrogel platform. This platform expedites the healing process of MRSA-infected wounds under ultrasonic stimulation and reduces the wound area by 75% in 10 Days. Therefore, this work highlights the potential of 2D BWO NSs as US-responsive sonosensitizers and a prospective biocompatible sonosensitizer-hydrogel platform for in vivo SDT applications.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"22 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202511512","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Sonodynamic therapy (SDT) offers tremendous potential in preventing multidrug-resistant bacterial infections, as it is noninvasive and requires no antibiotic dependence, effectively addressing the issue of bacterial resistance. This study implements an ultrasound (US) responsive 2D Bi2WO6 nanosheets (BWO NSs) as sonosensitizers to generate reactive oxygen species (ROS), resulting in sonodynamic broad-spectrum bacterial elimination. Notably, lanthanide Ytterbium ions are introduced (BWO-x%Yb NSs) to boost the generation of ROS, leading to an enhanced antibacterial effect. The RNA sequencing further reveals the underlying antibacterial mechanism, wherein ROS induces lipid oxidation in bacterial cell membranes and deterioration of membrane integrity, ultimately leading to cellular death. In vitro experiments verify that BWO-x%Yb NSs sonosensitizers attain 100% elimination on Methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli) under US irradiation, demonstrating a broad-spectrum bactericidal ability. Furthermore, to improve the biocompatibility for in vivo SDT, BWO-x%Yb NSs are integrated with hydrogel, serving as a sonosensitizer-hydrogel platform. This platform expedites the healing process of MRSA-infected wounds under ultrasonic stimulation and reduces the wound area by 75% in 10 Days. Therefore, this work highlights the potential of 2D BWO NSs as US-responsive sonosensitizers and a prospective biocompatible sonosensitizer-hydrogel platform for in vivo SDT applications.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.