Optical Control of the Thermal Conductivity in BaTiO3

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Claudio Cazorla, Carlos Escorihuela-Sayalero, Jesús Carrete, Jorge Íñiguez-González, Riccardo Rurali
{"title":"Optical Control of the Thermal Conductivity in BaTiO3","authors":"Claudio Cazorla, Carlos Escorihuela-Sayalero, Jesús Carrete, Jorge Íñiguez-González, Riccardo Rurali","doi":"10.1002/adfm.202425424","DOIUrl":null,"url":null,"abstract":"Achieving dynamic control over thermal conductivity remains a formidable challenge in condensed matter physics and materials science, particularly due to the limitations of traditional approaches like structural modifications and doping, which yield static and often irreversible effects. In this study, a solution is demonstrated to this conundrum through light-driven manipulation of thermal conductivity in the archetypal ferroelectric BaTiO<sub>3</sub> (BTO). We analyze, using first-principles simulations, how photoinduced charge injection triggers a ferro-to-paraelectric phase transition, yielding ultrafast, reversible changes in thermal transport properties. These results reveal a substantial reduction in lattice thermal conductivity, especially at low photoexcited charge densities, as the material undergoes a polar-to-nonpolar transformation. This reduction is primarily due to the suppression of low-frequency phonon modes, which limits heat flow as a result of enhanced phonon–phonon scattering. These findings underscore a step forward in tunable thermal conductivity, offering new prospects for efficient thermal management in advanced electronics and energy-harvesting applications.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"9 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202425424","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving dynamic control over thermal conductivity remains a formidable challenge in condensed matter physics and materials science, particularly due to the limitations of traditional approaches like structural modifications and doping, which yield static and often irreversible effects. In this study, a solution is demonstrated to this conundrum through light-driven manipulation of thermal conductivity in the archetypal ferroelectric BaTiO3 (BTO). We analyze, using first-principles simulations, how photoinduced charge injection triggers a ferro-to-paraelectric phase transition, yielding ultrafast, reversible changes in thermal transport properties. These results reveal a substantial reduction in lattice thermal conductivity, especially at low photoexcited charge densities, as the material undergoes a polar-to-nonpolar transformation. This reduction is primarily due to the suppression of low-frequency phonon modes, which limits heat flow as a result of enhanced phonon–phonon scattering. These findings underscore a step forward in tunable thermal conductivity, offering new prospects for efficient thermal management in advanced electronics and energy-harvesting applications.

Abstract Image

BaTiO3热导率的光学控制
在凝聚态物理和材料科学中,实现对热导率的动态控制仍然是一个艰巨的挑战,特别是由于结构修饰和掺杂等传统方法的局限性,这些方法产生静态且通常不可逆的影响。在这项研究中,通过在原型铁电BaTiO3 (BTO)中光驱动热导率的操作,证明了解决这一难题的方法。我们利用第一性原理模拟分析了光致电荷注入如何触发铁到准电相变,从而产生超快、可逆的热输运性质变化。这些结果揭示了晶格热导率的大幅降低,特别是在低光激发电荷密度下,因为材料经历了极性到非极性的转变。这种减少主要是由于低频声子模式的抑制,这限制了热流作为增强声子-声子散射的结果。这些发现强调了可调导热系数的进步,为先进电子和能量收集应用的高效热管理提供了新的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信