Jesse S.S. Novak, Lisa Polak, Sanjeethan C. Baksh, Douglas W. Barrows, Marina Schernthanner, Benjamin T. Jackson, Elizabeth A.N. Thompson, Anita Gola, M. Deniz Abdusselamoglu, Alain R. Bonny, Kevin A.U. Gonzales, Julia S. Brunner, Anna E. Bridgeman, Katie S. Stewart, Lynette Hidalgo, June Dela Cruz-Racelis, Ji-Dung Luo, Shiri Gur-Cohen, H. Amalia Pasolli, Thomas S. Carroll, Elaine Fuchs
{"title":"The integrated stress response fine-tunes stem cell fate decisions upon serine deprivation and tissue injury","authors":"Jesse S.S. Novak, Lisa Polak, Sanjeethan C. Baksh, Douglas W. Barrows, Marina Schernthanner, Benjamin T. Jackson, Elizabeth A.N. Thompson, Anita Gola, M. Deniz Abdusselamoglu, Alain R. Bonny, Kevin A.U. Gonzales, Julia S. Brunner, Anna E. Bridgeman, Katie S. Stewart, Lynette Hidalgo, June Dela Cruz-Racelis, Ji-Dung Luo, Shiri Gur-Cohen, H. Amalia Pasolli, Thomas S. Carroll, Elaine Fuchs","doi":"10.1016/j.cmet.2025.05.010","DOIUrl":null,"url":null,"abstract":"Epidermal stem cells produce the skin’s barrier that excludes pathogens and prevents dehydration. Hair follicle stem cells (HFSCs) are dedicated to bursts of hair regeneration, but upon injury, they can also reconstruct, and thereafter maintain, the overlying epidermis. How HFSCs balance these fate choices to restore physiologic function to damaged tissue remains poorly understood. Here, we uncover serine as an unconventional, non-essential amino acid that impacts this process. When dietary serine dips, endogenous biosynthesis in HFSCs fails to meet demands (and vice versa), slowing hair cycle entry. Serine deprivation also alters wound repair, further delaying hair regeneration while accelerating re-epithelialization kinetics. Mechanistically, we show that HFSCs sense each fitness challenge by triggering the integrated stress response, which acts as a rheostat of epidermal-HF identity. As stress levels rise, skin barrier restoration kinetics accelerate while hair growth is delayed. Our findings offer potential for dietary and pharmacological intervention to accelerate wound healing.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"589 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell metabolism","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cmet.2025.05.010","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Epidermal stem cells produce the skin’s barrier that excludes pathogens and prevents dehydration. Hair follicle stem cells (HFSCs) are dedicated to bursts of hair regeneration, but upon injury, they can also reconstruct, and thereafter maintain, the overlying epidermis. How HFSCs balance these fate choices to restore physiologic function to damaged tissue remains poorly understood. Here, we uncover serine as an unconventional, non-essential amino acid that impacts this process. When dietary serine dips, endogenous biosynthesis in HFSCs fails to meet demands (and vice versa), slowing hair cycle entry. Serine deprivation also alters wound repair, further delaying hair regeneration while accelerating re-epithelialization kinetics. Mechanistically, we show that HFSCs sense each fitness challenge by triggering the integrated stress response, which acts as a rheostat of epidermal-HF identity. As stress levels rise, skin barrier restoration kinetics accelerate while hair growth is delayed. Our findings offer potential for dietary and pharmacological intervention to accelerate wound healing.
期刊介绍:
Cell Metabolism is a top research journal established in 2005 that focuses on publishing original and impactful papers in the field of metabolic research.It covers a wide range of topics including diabetes, obesity, cardiovascular biology, aging and stress responses, circadian biology, and many others.
Cell Metabolism aims to contribute to the advancement of metabolic research by providing a platform for the publication and dissemination of high-quality research and thought-provoking articles.