{"title":"An organoid co-culture model for probing systemic anti-tumor immunity in lung cancer","authors":"Kaiyi Li, Chang Liu, Xizhao Sui, Chao Li, Ting Zhang, Tian Zhao, Dong Zhang, Hainan Wu, Yuhan Liu, Shuai Wang, Yingshun Yang, Baobao Lin, Wenyan Wang, Fan Yang, Xiaofang Chen, Peng Liu","doi":"10.1016/j.stem.2025.05.011","DOIUrl":null,"url":null,"abstract":"Deciphering interactions between tumor micro- and systemic immune macroenvironments is essential for developing more effective cancer diagnosis and therapeutic strategies. Here, we established a gel-liquid interface (GLI) co-culture model of lung cancer organoids (LCOs) and paired peripheral-blood mononuclear cells (PBMCs), featuring enhanced interactions between immune cells and tumor organoids for optimized simulation of <em>in vivo</em> systemic anti-tumor immunity. By constructing a cohort of lung cancer patients, we demonstrated that the responses of GLI models under αPD1 treatment reflected the immunotherapy outcomes of the corresponding patients precisely. Furthermore, we dissected the various tumor immune processes mediated by PBMC-derived T cells within GLI models through functional multi-omics analyses, along with the characterization of circulating tumor-reactive T cells (GNLY<sup>+</sup>CD44<sup>+</sup>CD9<sup>+</sup>) with effector memory-like phenotypes as a potential indicator of immunotherapy efficacy. Our findings indicate that the GLI co-culture model can be used to develop diagnostic strategies for precision immunotherapies, as well as understanding the underlying mechanisms.","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"100 1","pages":""},"PeriodicalIF":19.8000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell stem cell","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stem.2025.05.011","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Deciphering interactions between tumor micro- and systemic immune macroenvironments is essential for developing more effective cancer diagnosis and therapeutic strategies. Here, we established a gel-liquid interface (GLI) co-culture model of lung cancer organoids (LCOs) and paired peripheral-blood mononuclear cells (PBMCs), featuring enhanced interactions between immune cells and tumor organoids for optimized simulation of in vivo systemic anti-tumor immunity. By constructing a cohort of lung cancer patients, we demonstrated that the responses of GLI models under αPD1 treatment reflected the immunotherapy outcomes of the corresponding patients precisely. Furthermore, we dissected the various tumor immune processes mediated by PBMC-derived T cells within GLI models through functional multi-omics analyses, along with the characterization of circulating tumor-reactive T cells (GNLY+CD44+CD9+) with effector memory-like phenotypes as a potential indicator of immunotherapy efficacy. Our findings indicate that the GLI co-culture model can be used to develop diagnostic strategies for precision immunotherapies, as well as understanding the underlying mechanisms.
期刊介绍:
Cell Stem Cell is a comprehensive journal covering the entire spectrum of stem cell biology. It encompasses various topics, including embryonic stem cells, pluripotency, germline stem cells, tissue-specific stem cells, differentiation, epigenetics, genomics, cancer stem cells, stem cell niches, disease models, nuclear transfer technology, bioengineering, drug discovery, in vivo imaging, therapeutic applications, regenerative medicine, clinical insights, research policies, ethical considerations, and technical innovations. The journal welcomes studies from any model system providing insights into stem cell biology, with a focus on human stem cells. It publishes research reports of significant importance, along with review and analysis articles covering diverse aspects of stem cell research.