Boosting Nitrogen Activation with Asymmetric Coordinated Ni–N1–N4 Site through p–d Hybridization

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL
Yueling Chen, Laihao Luo, Houyi Wu, Xiangyu Kong, Yan Liu, Guocheng Huang, Ling Wu, Qiaoshan Chen, Jinhong Bi, Jie Zeng
{"title":"Boosting Nitrogen Activation with Asymmetric Coordinated Ni–N1–N4 Site through p–d Hybridization","authors":"Yueling Chen, Laihao Luo, Houyi Wu, Xiangyu Kong, Yan Liu, Guocheng Huang, Ling Wu, Qiaoshan Chen, Jinhong Bi, Jie Zeng","doi":"10.1021/acscatal.4c07825","DOIUrl":null,"url":null,"abstract":"Single-atom catalysts (SACs) hold great promise for the electrocatalytic N<sub>2</sub> reduction reaction (NRR), yet a comprehensive understanding of coordination microenvironment modulation remains elusive. Herein, Ni SACs with diverse Ni–N<sub>x</sub>–C configurations (square-planar: Ni–N<sub>4</sub>, triangle-cone: Ni–N<sub>1</sub>–N<sub>3</sub>, pentagon-planar: Ni–N<sub>5</sub>, and square-cone: Ni–N<sub>1</sub>–N<sub>4</sub>) were theoretically studied. Ni SACs with the Ni–N<sub>1</sub>–N<sub>4</sub> configuration demonstrated the highest stability and suitability for N<sub>2</sub> adsorption, hydrogenation (*NN → *NNH), and inhibition of *H adsorption for H<sub>2</sub> evolution. Notably, the additionally coordinated N disrupted the axisymmetric distribution of electrons in Ni–N<sub>1</sub>–N<sub>4</sub>, particularly in the <i>z</i>-direction of Ni d<sub><i>z</i><sup>2</sup></sub> orbitals, inducing the end-adsorbed N<sub>2</sub> to adopt an inclined position. The variation in electronic states facilitated the simultaneous <i>σ</i> and <i>π</i> interaction between Ni <i>d</i><sub>z<sup>2</sup></sub> and N<sub>2</sub>, forming a strong Ni–N bond (1.89 Å) and promoting N<sub>2</sub> activation via <i>p</i>–<i>d</i> hybridization. In light of the calculation results, Ni SACs with the Ni–N<sub>1</sub>–N<sub>4</sub> configuration (Ni<sub>20</sub>-FAN) were fabricated and displayed a superior NRR activity and Faradaic efficiency of 35.74% at −0.4 V vs RHE. <i>In situ</i> spectroscopic techniques together with density functional theory calculations further unraveled a facile distal pathway for ammonia evolution over Ni–N<sub>1</sub>–N<sub>4</sub> SACs. This work offers an innovative perspective for theory-guided modulation of the SAC coordination microenvironment, introducing asymmetric coordination as an effective strategy for the activation of symmetric inert molecules.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"602 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c07825","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Single-atom catalysts (SACs) hold great promise for the electrocatalytic N2 reduction reaction (NRR), yet a comprehensive understanding of coordination microenvironment modulation remains elusive. Herein, Ni SACs with diverse Ni–Nx–C configurations (square-planar: Ni–N4, triangle-cone: Ni–N1–N3, pentagon-planar: Ni–N5, and square-cone: Ni–N1–N4) were theoretically studied. Ni SACs with the Ni–N1–N4 configuration demonstrated the highest stability and suitability for N2 adsorption, hydrogenation (*NN → *NNH), and inhibition of *H adsorption for H2 evolution. Notably, the additionally coordinated N disrupted the axisymmetric distribution of electrons in Ni–N1–N4, particularly in the z-direction of Ni dz2 orbitals, inducing the end-adsorbed N2 to adopt an inclined position. The variation in electronic states facilitated the simultaneous σ and π interaction between Ni dz2 and N2, forming a strong Ni–N bond (1.89 Å) and promoting N2 activation via pd hybridization. In light of the calculation results, Ni SACs with the Ni–N1–N4 configuration (Ni20-FAN) were fabricated and displayed a superior NRR activity and Faradaic efficiency of 35.74% at −0.4 V vs RHE. In situ spectroscopic techniques together with density functional theory calculations further unraveled a facile distal pathway for ammonia evolution over Ni–N1–N4 SACs. This work offers an innovative perspective for theory-guided modulation of the SAC coordination microenvironment, introducing asymmetric coordination as an effective strategy for the activation of symmetric inert molecules.

Abstract Image

非对称配位Ni-N1-N4位点通过p-d杂交促进氮活化
单原子催化剂(SACs)在电催化N2还原反应(NRR)中具有很大的应用前景,但对配位微环境调节的全面理解仍然难以捉摸。本文从理论上研究了不同Ni - nx -c结构的Ni SACs(方平面:Ni - n4,三角锥:Ni - n1 - n3,五边形平面:Ni - n5,方锥:Ni - n1 - n4)。Ni - n1 - n4结构的Ni SACs对N2的吸附、加氢(*NN→*NNH)和抑制*H对H2的吸附具有最高的稳定性和适宜性。值得注意的是,额外的配位N破坏了Ni - n1 - n4中电子的轴对称分布,特别是在Ni dz2轨道的z方向,导致末端吸附的N2采用倾斜位置。电子态的变化促进了Ni dz2和N2之间同时发生σ和π相互作用,形成强Ni - n键(1.89 Å),并通过p-d杂化促进N2活化。根据计算结果,制备了具有Ni - n1 - n4结构的Ni SACs (Ni20-FAN),在−0.4 V vs RHE下具有优异的NRR活性和35.74%的法拉第效率。原位光谱技术和密度泛函理论计算进一步揭示了Ni-N1-N4 SACs中氨演化的一个简单的远端途径。这项工作为SAC配位微环境的理论指导调制提供了一个创新的视角,引入了不对称配位作为对称惰性分子激活的有效策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信