Accelerating CO2 direct air capture screening for metal-organic frameworks with a transferable machine learning force field

IF 17.5 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2025-07-02 DOI:10.1016/j.matt.2025.102203
Yunsung Lim , Hyunsoo Park , Aron Walsh , Jihan Kim
{"title":"Accelerating CO2 direct air capture screening for metal-organic frameworks with a transferable machine learning force field","authors":"Yunsung Lim ,&nbsp;Hyunsoo Park ,&nbsp;Aron Walsh ,&nbsp;Jihan Kim","doi":"10.1016/j.matt.2025.102203","DOIUrl":null,"url":null,"abstract":"<div><div>Direct air capture (DAC) of CO<sub>2</sub> is necessary for climate change mitigation, but it faces challenges from low CO<sub>2</sub> concentrations and competition from water vapor. Metal-organic frameworks (MOFs) hold significant promise for DAC owing to their high surface area and adsorption-based capture processes. However, identifying optimal MOFs is hindered by structural complexity and vast chemical diversity. Here, we introduced a machine learning force field (MLFF) tailored for CO<sub>2</sub> and H<sub>2</sub>O interactions in MOFs by fine-tuning a foundation model. To address smoothing issues and catastrophic forgetting, we curated the GoldDAC dataset and introduced a continual learning scheme. We further developed DAC-SIM, a molecular simulation package integrated with MLFF, including a Widom insertion. Then, we screened an extensive MOF database, uncovering high-performing MOFs and identifying chemical features for DAC applications. This approach overcomes prior limitations in describing MOF-CO<sub>2</sub> and MOF-H<sub>2</sub>O interactions, providing a scalable and accurate framework for DAC research of porous materials.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"8 7","pages":"Article 102203"},"PeriodicalIF":17.5000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238525002462","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Direct air capture (DAC) of CO2 is necessary for climate change mitigation, but it faces challenges from low CO2 concentrations and competition from water vapor. Metal-organic frameworks (MOFs) hold significant promise for DAC owing to their high surface area and adsorption-based capture processes. However, identifying optimal MOFs is hindered by structural complexity and vast chemical diversity. Here, we introduced a machine learning force field (MLFF) tailored for CO2 and H2O interactions in MOFs by fine-tuning a foundation model. To address smoothing issues and catastrophic forgetting, we curated the GoldDAC dataset and introduced a continual learning scheme. We further developed DAC-SIM, a molecular simulation package integrated with MLFF, including a Widom insertion. Then, we screened an extensive MOF database, uncovering high-performing MOFs and identifying chemical features for DAC applications. This approach overcomes prior limitations in describing MOF-CO2 and MOF-H2O interactions, providing a scalable and accurate framework for DAC research of porous materials.

Abstract Image

Abstract Image

利用可转移的机器学习力场加速金属有机框架的二氧化碳直接空气捕获筛选
二氧化碳的直接空气捕获(DAC)对于减缓气候变化是必要的,但它面临着低二氧化碳浓度和水蒸气竞争的挑战。金属有机框架(mof)由于其高表面积和基于吸附的捕获过程,在DAC中具有重要的前景。然而,结构复杂性和化学多样性阻碍了最佳mof的确定。在这里,我们通过微调基础模型,引入了针对mof中CO2和H2O相互作用量身定制的机器学习力场(MLFF)。为了解决平滑问题和灾难性遗忘,我们整理了GoldDAC数据集,并引入了一个持续学习方案。我们进一步开发了DAC-SIM,这是一个与MLFF集成的分子模拟包,包括一个Widom插入。然后,我们筛选了一个广泛的MOF数据库,发现了高性能的MOF,并确定了DAC应用的化学特征。该方法克服了先前描述MOF-CO2和MOF-H2O相互作用的局限性,为多孔材料的DAC研究提供了可扩展和准确的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信