Helmut Lammer, Manuel Scherf, Nikolai V. Erkaev, Daria Kubyshkina, Kseniia D. Gorbunova, Luca Fossati, Peter Woitke
{"title":"Earth-mass planets with He atmospheres in the habitable zone of Sun-like stars","authors":"Helmut Lammer, Manuel Scherf, Nikolai V. Erkaev, Daria Kubyshkina, Kseniia D. Gorbunova, Luca Fossati, Peter Woitke","doi":"10.1038/s41550-025-02550-6","DOIUrl":null,"url":null,"abstract":"<p>The discovery of many low-mass exoplanets, including several planets within the habitable zone of their host stars, has led to the question of which kind of atmosphere surrounds them. Recent exoplanet detections have revealed the existence of a large population of low-mass planets (<3 <i>M</i><sub><span>⊕</span></sub>) with H<sub>2</sub>-dominated atmospheres that must have been accreted from the protoplanetary disk. As the gas disk usually has an ~10% fraction of helium, we model the possible enrichment of the primordial He fraction in the atmosphere of planets with mass between 0.75 <i>M</i><sub><span>⊕</span></sub> and 3.0 <i>M</i><sub><span>⊕</span></sub> that orbit in the classical habitable zone of Sun-like stars. Depending on the mass accreted by the planet during the gas disk phase and the stellar high-energy flux between ~10 and 120 nm, we find that Earth-like planets with masses between ~0.95 <i>M</i><sub><span>⊕</span></sub> and 1.25 <i>M</i><sub><span>⊕</span></sub> inside the habitable zone of Sun-like stars can end up with He-dominated primordial atmospheres. This finding has important implications for the evolution of Earth-like habitats, as these thick helium-enriched primordial atmospheres can inhibit the habitability of these planets. The upcoming generation of giant telescopes, such as the Extremely Large Telescope, may enable us to observe and explore these atmospheres.</p>","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"51 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41550-025-02550-6","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The discovery of many low-mass exoplanets, including several planets within the habitable zone of their host stars, has led to the question of which kind of atmosphere surrounds them. Recent exoplanet detections have revealed the existence of a large population of low-mass planets (<3 M⊕) with H2-dominated atmospheres that must have been accreted from the protoplanetary disk. As the gas disk usually has an ~10% fraction of helium, we model the possible enrichment of the primordial He fraction in the atmosphere of planets with mass between 0.75 M⊕ and 3.0 M⊕ that orbit in the classical habitable zone of Sun-like stars. Depending on the mass accreted by the planet during the gas disk phase and the stellar high-energy flux between ~10 and 120 nm, we find that Earth-like planets with masses between ~0.95 M⊕ and 1.25 M⊕ inside the habitable zone of Sun-like stars can end up with He-dominated primordial atmospheres. This finding has important implications for the evolution of Earth-like habitats, as these thick helium-enriched primordial atmospheres can inhibit the habitability of these planets. The upcoming generation of giant telescopes, such as the Extremely Large Telescope, may enable us to observe and explore these atmospheres.
Nature AstronomyPhysics and Astronomy-Astronomy and Astrophysics
CiteScore
19.50
自引率
2.80%
发文量
252
期刊介绍:
Nature Astronomy, the oldest science, has played a significant role in the history of Nature. Throughout the years, pioneering discoveries such as the first quasar, exoplanet, and understanding of spiral nebulae have been reported in the journal. With the introduction of Nature Astronomy, the field now receives expanded coverage, welcoming research in astronomy, astrophysics, and planetary science. The primary objective is to encourage closer collaboration among researchers in these related areas.
Similar to other journals under the Nature brand, Nature Astronomy boasts a devoted team of professional editors, ensuring fairness and rigorous peer-review processes. The journal maintains high standards in copy-editing and production, ensuring timely publication and editorial independence.
In addition to original research, Nature Astronomy publishes a wide range of content, including Comments, Reviews, News and Views, Features, and Correspondence. This diverse collection covers various disciplines within astronomy and includes contributions from a diverse range of voices.