Joana F. da Rocha, Michelle L. Lance, Renhao Luo, Pius Schlachter, Luis Moreira, Mohamed Ariff Iqbal, Paula Kuhn, Robert S. Gardner, Sophia Valaris, Mohammad R. Islam, Gabriele M. Gassner, Sofia Mazuera, Kaela Healy, Sanjana Shastri, Nathaniel B. Hibbert, Kristen V. Moran-Figueroa, Erin B. Haley, Ryan D. Pfeiffer, Sema Aygar, Ksenia V. Kastanenka, Logan Brase, Oscar Harari, Bruno A. Benitez, Nathan R. Tucker, Christiane D. Wrann
{"title":"Protective exercise responses in the dentate gyrus of Alzheimer’s disease mouse model revealed with single-nucleus RNA-sequencing","authors":"Joana F. da Rocha, Michelle L. Lance, Renhao Luo, Pius Schlachter, Luis Moreira, Mohamed Ariff Iqbal, Paula Kuhn, Robert S. Gardner, Sophia Valaris, Mohammad R. Islam, Gabriele M. Gassner, Sofia Mazuera, Kaela Healy, Sanjana Shastri, Nathaniel B. Hibbert, Kristen V. Moran-Figueroa, Erin B. Haley, Ryan D. Pfeiffer, Sema Aygar, Ksenia V. Kastanenka, Logan Brase, Oscar Harari, Bruno A. Benitez, Nathan R. Tucker, Christiane D. Wrann","doi":"10.1038/s41593-025-01971-w","DOIUrl":null,"url":null,"abstract":"<p>Exercise’s protective effects in Alzheimer’s disease (AD) are well recognized, but cell-specific contributions to this phenomenon remain unclear. Here we used single-nucleus RNA sequencing (snRNA-seq) to dissect the response to exercise (free-wheel running) in the neurogenic stem-cell niche of the hippocampal dentate gyrus in male APP/PS1 transgenic AD model mice. Transcriptomic responses to exercise were distinct between wild-type and AD mice, and most prominent in immature neurons. Exercise restored the transcriptional profiles of a proportion of AD-dysregulated genes in a cell type-specific manner. We identified a neurovascular-associated astrocyte subpopulation, the abundance of which was reduced in AD, whereas its gene expression signature was induced with exercise. Exercise also enhanced the gene expression profile of disease-associated microglia. Oligodendrocyte progenitor cells were the cell type with the highest proportion of dysregulated genes recovered by exercise. Last, we validated our key findings in a human AD snRNA-seq dataset. Together, these data present a comprehensive resource for understanding the molecular mediators of neuroprotection by exercise in AD.</p>","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"90 1","pages":""},"PeriodicalIF":21.2000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41593-025-01971-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Exercise’s protective effects in Alzheimer’s disease (AD) are well recognized, but cell-specific contributions to this phenomenon remain unclear. Here we used single-nucleus RNA sequencing (snRNA-seq) to dissect the response to exercise (free-wheel running) in the neurogenic stem-cell niche of the hippocampal dentate gyrus in male APP/PS1 transgenic AD model mice. Transcriptomic responses to exercise were distinct between wild-type and AD mice, and most prominent in immature neurons. Exercise restored the transcriptional profiles of a proportion of AD-dysregulated genes in a cell type-specific manner. We identified a neurovascular-associated astrocyte subpopulation, the abundance of which was reduced in AD, whereas its gene expression signature was induced with exercise. Exercise also enhanced the gene expression profile of disease-associated microglia. Oligodendrocyte progenitor cells were the cell type with the highest proportion of dysregulated genes recovered by exercise. Last, we validated our key findings in a human AD snRNA-seq dataset. Together, these data present a comprehensive resource for understanding the molecular mediators of neuroprotection by exercise in AD.
期刊介绍:
Nature Neuroscience, a multidisciplinary journal, publishes papers of the utmost quality and significance across all realms of neuroscience. The editors welcome contributions spanning molecular, cellular, systems, and cognitive neuroscience, along with psychophysics, computational modeling, and nervous system disorders. While no area is off-limits, studies offering fundamental insights into nervous system function receive priority.
The journal offers high visibility to both readers and authors, fostering interdisciplinary communication and accessibility to a broad audience. It maintains high standards of copy editing and production, rigorous peer review, rapid publication, and operates independently from academic societies and other vested interests.
In addition to primary research, Nature Neuroscience features news and views, reviews, editorials, commentaries, perspectives, book reviews, and correspondence, aiming to serve as the voice of the global neuroscience community.