AI-Based screening for thoracic aortic aneurysms in routine breast MRI

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Dimitrios Bounias, Tobit Führes, Luise Brock, Johanna Graber, Lorenz A. Kapsner, Andrzej Liebert, Hannes Schreiter, Jessica Eberle, Dominique Hadler, Dominika Skwierawska, Ralf Floca, Peter Neher, Balint Kovacs, Evelyn Wenkel, Sabine Ohlmeyer, Michael Uder, Klaus Maier-Hein, Sebastian Bickelhaupt
{"title":"AI-Based screening for thoracic aortic aneurysms in routine breast MRI","authors":"Dimitrios Bounias, Tobit Führes, Luise Brock, Johanna Graber, Lorenz A. Kapsner, Andrzej Liebert, Hannes Schreiter, Jessica Eberle, Dominique Hadler, Dominika Skwierawska, Ralf Floca, Peter Neher, Balint Kovacs, Evelyn Wenkel, Sabine Ohlmeyer, Michael Uder, Klaus Maier-Hein, Sebastian Bickelhaupt","doi":"10.1038/s41467-025-59694-2","DOIUrl":null,"url":null,"abstract":"<p>Prognosis for thoracic aortic aneurysms is significantly worse for women than men, with a higher mortality rate observed among female patients. The increasing use of magnetic resonance breast imaging (MRI) offers a unique opportunity for simultaneous detection of both breast cancer and thoracic aortic aneurysms. We retrospectively validate a fully-automated artificial neural network (ANN) pipeline on 5057 breast MRI examinations from public (Duke University Hospital/EA1141 trial) and in-house (Erlangen University Hospital) data. The ANN, benchmarked against 3D-ground-truth segmentations, clinical reports, and a multireader panel, demonstrates high technical robustness (dice/clDice 0.88-0.91/0.97-0.99) across different vendors and field strengths. The ANN improves aneurysm detection rates by 3.5-fold compared with routine clinical readings, highlighting its potential to improve early diagnosis and patient outcomes. Notably, a higher odds ratio (OR = 2.29, CI: [0.55,9.61]) for thoracic aortic aneurysms is observed in women with breast cancer or breast cancer history, suggesting potential further benefits from integrated simultaneous assessment for cancer and aortic aneurysms.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"587 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59694-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Prognosis for thoracic aortic aneurysms is significantly worse for women than men, with a higher mortality rate observed among female patients. The increasing use of magnetic resonance breast imaging (MRI) offers a unique opportunity for simultaneous detection of both breast cancer and thoracic aortic aneurysms. We retrospectively validate a fully-automated artificial neural network (ANN) pipeline on 5057 breast MRI examinations from public (Duke University Hospital/EA1141 trial) and in-house (Erlangen University Hospital) data. The ANN, benchmarked against 3D-ground-truth segmentations, clinical reports, and a multireader panel, demonstrates high technical robustness (dice/clDice 0.88-0.91/0.97-0.99) across different vendors and field strengths. The ANN improves aneurysm detection rates by 3.5-fold compared with routine clinical readings, highlighting its potential to improve early diagnosis and patient outcomes. Notably, a higher odds ratio (OR = 2.29, CI: [0.55,9.61]) for thoracic aortic aneurysms is observed in women with breast cancer or breast cancer history, suggesting potential further benefits from integrated simultaneous assessment for cancer and aortic aneurysms.

Abstract Image

基于人工智能的胸主动脉瘤常规MRI筛查
女性胸主动脉瘤的预后明显差于男性,女性患者的死亡率较高。越来越多的使用磁共振乳房成像(MRI)提供了一个独特的机会,同时检测乳腺癌和胸主动脉瘤。我们回顾性地验证了来自公共(杜克大学医院/EA1141试验)和内部(埃尔兰根大学医院)的5057次乳房MRI检查的全自动人工神经网络(ANN)管道。该人工神经网络以3D-ground-truth分割、临床报告和多阅读器面板为基准,在不同供应商和不同领域的优势下显示出高技术稳健性(dice/clDice 0.88-0.91/0.97-0.99)。与常规临床读数相比,人工神经网络将动脉瘤检出率提高了3.5倍,突出了其改善早期诊断和患者预后的潜力。值得注意的是,在患有乳腺癌或有乳腺癌病史的女性中,胸主动脉瘤的优势比(OR = 2.29, CI:[0.55,9.61])更高,这表明对癌症和主动脉瘤进行综合同时评估可能有进一步的益处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信