Inhomogeneous metrics on complex bundles in Lovelock gravity

IF 5 2区 物理与天体物理 Q1 Physics and Astronomy
Cristóbal Corral, Borja Diez, Daniel Flores-Alfonso, Nelson Merino, Leonardo Sanhueza
{"title":"Inhomogeneous metrics on complex bundles in Lovelock gravity","authors":"Cristóbal Corral, Borja Diez, Daniel Flores-Alfonso, Nelson Merino, Leonardo Sanhueza","doi":"10.1103/physrevd.111.124016","DOIUrl":null,"url":null,"abstract":"We consider Lovelock gravity in arbitrary, even dimensions. We find a large class of new gravitational instantons by considering extended nontrivial circle bundles over Kähler manifolds. Concretely, we generalize the Page-Pope metric in the presence of higher-curvature corrections of the Lovelock class. A subset of these spaces admits analytic continuation into the Lorentzian sector, producing new stationary solutions in Lovelock gravity. The geometries are fully determined by a single algebraic equation. We also obtain necessary and sufficient conditions for Lovelock-constant Kähler manifolds to exist in Lovelock gravity. Finally, we find a wide class of Lovelock-Maxwell solutions beyond staticity, allowing us to obtain the electrovacuum extension of these instantons. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"219 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.124016","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We consider Lovelock gravity in arbitrary, even dimensions. We find a large class of new gravitational instantons by considering extended nontrivial circle bundles over Kähler manifolds. Concretely, we generalize the Page-Pope metric in the presence of higher-curvature corrections of the Lovelock class. A subset of these spaces admits analytic continuation into the Lorentzian sector, producing new stationary solutions in Lovelock gravity. The geometries are fully determined by a single algebraic equation. We also obtain necessary and sufficient conditions for Lovelock-constant Kähler manifolds to exist in Lovelock gravity. Finally, we find a wide class of Lovelock-Maxwell solutions beyond staticity, allowing us to obtain the electrovacuum extension of these instantons. Published by the American Physical Society 2025
洛夫洛克引力中复束上的非齐次度量
我们考虑任意偶数维的洛夫洛克引力。通过考虑Kähler流形上的扩展非平凡圆束,我们发现了一大类新的引力瞬子。具体地说,我们推广了存在Lovelock类的高曲率修正的Page-Pope度量。这些空间的一个子集允许解析延拓到洛伦兹扇区,在洛夫洛克引力中产生新的固定解。几何图形完全由一个代数方程决定。得到了Lovelock-常数Kähler流形在Lovelock引力中存在的充分必要条件。最后,我们发现了一类广泛的洛夫洛克-麦克斯韦解,使我们能够得到这些瞬子的电真空扩展。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信