Interpretable Independent Recurrent Networks for Forecasting Stroke in Atrial Fibrillation.

Jung-Chi Hsu, Yi-Hsien Hsieh, Yen-Yun Yang, Shu-Lin Chuang, Che Lin, Lian-Yu Lin
{"title":"Interpretable Independent Recurrent Networks for Forecasting Stroke in Atrial Fibrillation.","authors":"Jung-Chi Hsu, Yi-Hsien Hsieh, Yen-Yun Yang, Shu-Lin Chuang, Che Lin, Lian-Yu Lin","doi":"10.1016/j.jacasi.2025.04.003","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Atrial fibrillation (AF) is a major risk factor for transient ischemic attack (TIA)/ischemic stroke (IS).</p><p><strong>Objectives: </strong>Given the dynamic nature of IS risk, this study aimed to predict IS risk in AF patients using a high-dimensional time-series model.</p><p><strong>Methods: </strong>We conducted a cohort study at the National Taiwan University Hospital from 2014 to 2019, including 7,710 AF patients, with external validation in 6,822 patients from the National Taiwan University Hospital Yunlin Branch. The Forecasting Strokes via Interpretable Independent Networks (ForeSIIN) model, based on gated recurrent units, was proposed. Kaplan-Meier analysis with log-rank test evaluated risk group differences.</p><p><strong>Results: </strong>The annual TIA/IS incidence rate ranged from 181.96 (95% CI: 164.42-200.93) to 15.81 (95% CI: 12.38-20.18) per 1,000 person-years, with an overall incidence of 42.40 (95% CI: 39.60-45.39). The ForeSIIN model achieved the best prediction with an area under the receiver-operating characteristics curve of 0.764 (95% CI: 0.722-0.810), compared with the CHA<sub>2</sub>DS<sub>2</sub>-VASc score (AUC: 0.650; 95% CI: 0.596-0.699) and other nonsequential models: extreme gradient boosting AUC: 0.722 (95% CI: 0.676-0.769), support vector machine AUC 0.691 (95% CI: 0.637-0.741), random forest AUC: 0.689 (95% CI: 0.637-0.742). External validation showed area under the receiver-operating characteristics curve of 0.646 (95% CI: 0.618-0.671) and area under the precision-recall curve of 0.222 (95% CI: 0.184-0.259). Feature impact analysis identified the top 5 factors: history of TIA/IS, estimated glomerular filtration rate, C-reactive protein, hematocrit, and plasma fasting glucose. Kaplan-Meier analysis showed significant risk differences between ForeSIIN groups (log-rank P < 0.001).</p><p><strong>Conclusions: </strong>The innovative ForeSIIN model demonstrated accurate stroke prediction in AF patients and enhanced the interpretation of dynamic risk factors over time.</p>","PeriodicalId":73529,"journal":{"name":"JACC. Asia","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACC. Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jacasi.2025.04.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Atrial fibrillation (AF) is a major risk factor for transient ischemic attack (TIA)/ischemic stroke (IS).

Objectives: Given the dynamic nature of IS risk, this study aimed to predict IS risk in AF patients using a high-dimensional time-series model.

Methods: We conducted a cohort study at the National Taiwan University Hospital from 2014 to 2019, including 7,710 AF patients, with external validation in 6,822 patients from the National Taiwan University Hospital Yunlin Branch. The Forecasting Strokes via Interpretable Independent Networks (ForeSIIN) model, based on gated recurrent units, was proposed. Kaplan-Meier analysis with log-rank test evaluated risk group differences.

Results: The annual TIA/IS incidence rate ranged from 181.96 (95% CI: 164.42-200.93) to 15.81 (95% CI: 12.38-20.18) per 1,000 person-years, with an overall incidence of 42.40 (95% CI: 39.60-45.39). The ForeSIIN model achieved the best prediction with an area under the receiver-operating characteristics curve of 0.764 (95% CI: 0.722-0.810), compared with the CHA2DS2-VASc score (AUC: 0.650; 95% CI: 0.596-0.699) and other nonsequential models: extreme gradient boosting AUC: 0.722 (95% CI: 0.676-0.769), support vector machine AUC 0.691 (95% CI: 0.637-0.741), random forest AUC: 0.689 (95% CI: 0.637-0.742). External validation showed area under the receiver-operating characteristics curve of 0.646 (95% CI: 0.618-0.671) and area under the precision-recall curve of 0.222 (95% CI: 0.184-0.259). Feature impact analysis identified the top 5 factors: history of TIA/IS, estimated glomerular filtration rate, C-reactive protein, hematocrit, and plasma fasting glucose. Kaplan-Meier analysis showed significant risk differences between ForeSIIN groups (log-rank P < 0.001).

Conclusions: The innovative ForeSIIN model demonstrated accurate stroke prediction in AF patients and enhanced the interpretation of dynamic risk factors over time.

预测房颤卒中的可解释的独立复发网络。
背景:心房颤动(AF)是短暂性脑缺血发作(TIA)/缺血性脑卒中(is)的主要危险因素。目的:考虑到IS风险的动态性,本研究旨在使用高维时间序列模型预测AF患者的IS风险。方法:我们于2014 - 2019年在台湾大学附属医院进行队列研究,纳入7710例房颤患者,并对台湾大学附属医院云林分院6822例患者进行外部验证。提出了基于门控循环单元的可解释独立网络预测冲程模型(ForeSIIN)。Kaplan-Meier分析采用log-rank检验评估风险组差异。结果:TIA/IS的年发病率范围为每1000人年181.96 (95% CI: 164.42-200.93)至15.81 (95% CI: 12.38-20.18),总发病率为42.40 (95% CI: 39.60-45.39)。与CHA2DS2-VASc评分(AUC: 0.650;95% CI: 0.596-0.699)和其他非序列模型:极端梯度增强AUC: 0.722 (95% CI: 0.676-0.769),支持向量机AUC: 0.691 (95% CI: 0.637-0.741),随机森林AUC: 0.689 (95% CI: 0.637-0.742)。外部验证显示,受试者-操作特征曲线下面积为0.646 (95% CI: 0.618-0.671),精密度-召回曲线下面积为0.222 (95% CI: 0.184-0.259)。特征影响分析确定了前5个因素:TIA/IS病史、肾小球滤过率、c反应蛋白、红细胞压积和空腹血糖。Kaplan-Meier分析显示,ForeSIIN组之间存在显著的风险差异(log-rank P < 0.001)。结论:创新的ForeSIIN模型能够准确预测房颤患者的卒中,并随着时间的推移增强对动态危险因素的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JACC. Asia
JACC. Asia Cardiology and Cardiovascular Medicine
CiteScore
4.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信